Field Book for Describing and Sampling Soils

Version 2.0

National Soil Survey Center
Natural Resources Conservation Service
U.S. Department of Agriculture

September 2002

ACKNOWLEDGMENTS

The science and knowledge in this document are distilled from the collective experience of thousands of dedicated Soil Scientists during the more than 100 years of the National Cooperative Soil Survey Program. A special thanks is due to these largely unknown stewards of the natural resources of this nation.

This book was written, compiled, and edited by Philip J. Schoeneberger, Douglas A. Wysocki, Ellis C. Benham, NRCS, Lincoln, NE; and William D. Broderson, NRCS, Salt Lake City, UT.

Special thanks and recognition are extended to those who contributed extensively to the preparation and production of this book: the 75 soil scientists from the NRCS along with NCSS cooperators who reviewed and improved it; Tammy Nepple for document preparation and graphics; Howard Camp for graphics; Jim Culver for sponsoring it; and the NRCS Soil Survey Division for funding it.

Proper citation for this document is:

Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., and Broderson, W.D. (editors), 2002. Field book for describing and sampling soils, Version 2.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.

Cover Photo: Soil profile of a Segno fine sandy loam (*Plinthic Paleudalf*) showing reticulate masses or blocks of plinthite at 30 inches (profile tape is in feet). *Courtesy of Frankie F. Wheeler (retired), NRCS, Temple TX; and Larry Ratliff (retired), National Soil Survey Center, Lincoln, NE.*

Use of trade or firm names is for reader information only, and does not constitute endorsement or recommended use by the U.S. Department of Agriculture of any commercial product or service.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer.

FOREWORD

- **Purpose:** The following instructions, definitions, concepts, and codes are a field guide for making or reading soil descriptions and sampling soils as presently practiced in the USA.
- Background: The methodology of soil descriptions was developed by soil scientists during the entire course of the Soil Survey Program. The USDA published small booklets of *Instructions to Field Parties*, including soil descriptions, in 1902-1904, 1906, and 1914. The first USDA guide for identification and description for soil horizons was released in 1937 (Bureau of Chemistry and Soils, 1937). Roy Simonson and others later summarized and revised this information (Soil Survey Staff, 1951; Soil Survey Staff, 1962). Very brief, color book inserts with shorthand notation were released by the Soil Conservation Service (e.g., Spartanburg, SC, 1961; Western Technical Center, Portland, OR, 1974). This document is an expanded, and updated version of earlier guides that summarizes the present knowledge base. This version (2.0) includes minor corrections and recent updates to the original 1998 release (ver. 1.1; Schoeneberger, et al., 1998) and updates in source documents.
- **Standards:** This book summarizes and updates the current National Cooperative Soil Survey conventions for describing soils (SSM, 1993; NSSH, 2001; PDP 3.6, 1996; NASIS (5.0)). Much of the content is an abbreviation of the primary sources.
- Regarding PEDON (PDP 3.5 / 3.6): This document is intended to be both current and usable by the entire soil science community. It is not a guide on "How to use PDP or NASIS." At this time, PDP is the most dated and therefore the least compatible NRCS document relative to the Soil Survey Manual, National Soil Survey Handbook, Soil Taxonomy, and NASIS. Differences and linkages between PDP 3.6 and NASIS are shown, where reasonable to do so, as an aid to interpreting and converting historical data.

Standard procedures and terms for describing soils have changed and increased in recent years (e.g., redoximorphic features). Coincident with these changes has been the development and use of computer databases to store soil descriptions and information. The nature of databases, for better or worse, requires consistent and "correct" use of terms.

Sources: This Field Book draws from several primary sources: The Soil Survey Manual (Soil Survey Staff, 1993); the PEDON Description Program (PDP) Version 4 Design Documents (Soil Survey Staff, 1996); and the

- National Soil Survey Handbook (NSSH) Parts 618 and 629 (Soil Survey Staff, 2001). Other less pervasive sources are footnoted throughout the Field Book to encourage access to original information.
- **Brevity:** In a field book, brevity is efficiency. Despite this book's apparent length, the criteria, definitions, and concepts presented here are condensed. We urge users to review the more comprehensive information in the original sources to avoid errors due to our brevity.
- Units: It is critical to specify and consistently use units for describing a soil. Metric units are preferred. NASIS requires metric units. (In PDP, you can choose Metric or English units.)
- Format: The "Site Description Section" and "Profile Description Section" in this book generally follow conventional profile description format and sequence (e.g., SCS-Form 232, December 1984). Some data elements (descriptors) are rearranged in this document into a sequence that is more compatible with the description process in the field (e.g., Horizon Boundary is next to Horizon Depth, rather than at the very end). This sequence is somewhat different from and does not supersede the conventions followed in writing formal soil descriptions for Soil Survey Reports or Official Soil Series Descriptions (i.e., National Soil Survey Handbook, Part 614; Soil Survey Staff, 2001).
- Codes: Short-hand notation is listed in the *Code* column for each descriptor.

 Long-standing, conventional codes are retained because of their widespread recognition. Some codes of recent origin have been changed to make them more logical. Some data elements have different codes in various systems [e.g., conventional (Conv.) vs. NASIS vs. PEDON Description Program codes (PDP)] and several columns may be shown to facilitate conversions. The preferred standard code column is shown bold. If only 1 untitled code column is shown, it can be assumed that the conventional, NASIS, and PDP codes are all the same.
- Standard Terms vs. Creativity: Describe and record what you observe.

 Choice lists in this document are a minimal set of descriptors. Use additional descriptors, notes, and sketches to record pertinent information and/or features for which no data element exists. Record such information as free-hand notes under Miscellaneous Field Notes (or User Defined Entries in PDP).
- Changes: Soil Science is an evolving field. Changes to this Field Book should and will occur. Please send comments or suggestions to the Director, National Soil Survey Center, USDA-NRCS; 100 Centennial Mall North, Rm. 152; Lincoln. NE 68508-3866.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	i
FOREWORD	ii
SITE DESCRIPTION	
Describer(s) Name	
Date	
Climate	
Weather Conditions	
Air Temperature	
Soil Temperature	1–1
[Soil Temperature, Soil Temperature Depth]	
Location	1–2
[Latitude, Longitude, Datum Name]	4 0
Topographic Quadrangle	1–2
Soil Survey Site Identification Number	1-2
County FIPS Code	
MLRA	
Transects[Transect ID, Stop Number, Interval]	1−ა
Series Name	1 /
Geomorphic Information	
Physiographic Location	
[Physiographic Division, Physiographic Province,	1-4
Physiographic Section, State Physiographic Area,	
Local Physiographic/Geographic Name]	
Geomorphic Description	1_4
[Landscape, Landform, Microfeature, Anthropogenic Feature]	
Surface Morphometry	1_4
[Elevation, Slope Aspect, Slope Gradient, Slope	¬
Complexity, Slope Shape, Hillslope - Profile Position,	
Geomorphic Component (Hills, Terraces and Stepped	
Landforms, Mountains, Flat Plains), Microrelief]	•
Water Status	1-10
Drainage	1-10
Flooding	1–11
[Frequency, Duration, Months]	• •
Ponding	1–12
[Frequency Depth Duration]	

(Soil) Water State 1–13
Depth To Water Table1–14
(Seasonal) High Water Table - Kind1-14
Vegetation / Land Cover1-15
[Earth Cover - Kind, Plant Symbol, Plant Common Name,
Plant Scientific Name]
Parent Material1–17
Bedrock 1–20
[Kind, Fracture Interval Class, Bedrock Hardness,
Weathering Class, Depth]
Erosion 1–23
[Kind, Degree, Class]
Runoff1–24
Surface Runoff1–24
The Index (Of) Surface Runoff Class1-25
Surface Fragments (Formerly Surface Stoniness)1-25
Diagnostic Horizons Or Properties1-26
[Kind, Depth]
References 1–27
PROFILE / PEDON DESCRIPTION2-1
Observation Method2-1
[Kind, Relative Size]
Taxonomic Classification2-2
Horizon Nomenclature 2-2
Master, Transitional, and Common Horizon Combinations 2–2
Horizon Suffixes2–3
Other Horizon Modifiers2-4
[Numerical Prefixes, Numerical Suffixes, The Prime]
Diagnostic Horizons2-4
Horizon Depth2-4
Horizon Thickness2-5
Horizon Boundary2-5
[Distinctness, Topography]
Soil Color2-7
Decision Flowchart For Describing Soil Colors2–7
(Soil) Matrix Color2–7
[(Soil) Color, Moisture State, Location Or Condition]
Mottles2–9
[Quantity, Size, Contrast, Color, Moisture State, Shape]
Tabular List for Determination of Color Contrast2–12

Redoximorphic Features - RMF (Discussion)	2-14
Redoximorphic Features	2-15
Shape, Location, Hardness, Boundary	
Concentrations (Discussion)	2 10
Concentrations (Discussion)	
	2-19
[Kind, Quantity (Percent Of Area Covered), Size,	
Contrast, Color, Moisture State, Shape, Location,	
Hardness, Boundary]	
Ped and Void Surface Features	2–25
[Kind, Amount, Continuity, Distinctness, Location, Color]	
(Soil) Texture	
Texture Class	
Texture Triangle (Fine Earth)	
Texture Modifiers	2-30
[% by Volume; Size & Quantity; Compositional]	
Terms Used In Lieu Of Texture	2-34
Comparison of Particle Size Class Systems (table)	2-35
Rock and Other Fragments	2–37
[Kind, Volume Percent, Roundness, Size Classes,	
and Descriptive Terms]	
(Soil) Structure	2–41
[Type, Grade, Size]	
Consistence	
Rupture Resistance	2–49
[Blocks, Peds, and Clods, Surface Crust and Plates]	
Cementing Agents	
Manner Of Failure	
Stickiness	
Plasticity	
Penetration Resistance	
Excavation Difficulty	
Roots	2-56
[Quantity, Size, Quantity (graphic), Location]	
Pores (Discussion)	
Pores	2-59
[Quantity, Size, Shape, Vertical Continuity]	
Cracks	2-61
[Kind, Depth, Relative Frequency]	
Soil Crusts (Discussion)	
Soil Crusts	2-65
Special Features	2-67
[Kind, Area (%) Occupied]	

Permeability / Saturated Hydraulic Conductivity	2-08
(Discussion)	
Permeability	2–69
Saturated Hydraulic Conductivity (K _{sat})	2–69
Chemical Response	2–70
Reaction (pH)	
Effervescence	2–71
[Class, Location, Chemical Agent]	
Reduced Conditions	2–72
Salinity	
Sodium Adsorption Ratio (SAR)	2–73
Odor	2–73
Miscellaneous Field Notes	2-73
Minimum Data Set (For A Soil Description)	
Profile Description Data Sheet	2_74
Profile Description Example	
Profile Description Report Example	2-7-1 2_74
(For Soil Survey Reports)	2-17
Pedon Description Data Sheet (blank)	2 75
Profile Description Example (completed)	2 77
References	2-77
References	2-79
GEOMORPHIC DESCRIPTION	3–1
Geomorphic Description System	
Part I: Physiographic Location	3-2
Part II: Geomorphic Description (Outline)	3_10
Part II: Geomorphic Description	
Part III: Surface Morphometry	3-11 3 37
References	3-3 <i>1</i>
References	3–44
SOIL TAXONOMY	4–1
Introduction	
Horizon Nomenclature	4–1
Master And Transitional Horizons	
Horizon Suffixes	
Horizon Nomenclature Conversion Charts	
Texture Triangle: Soil Texture Family Classes	
Combined Texture Triangles: Fine Earth Texture Cl	4- <i>1</i>
and Soil Texture Family Classes	aაა⊏ა ⊿ ∩
References	4–9
GEOLOGY	5_1
Introduction	
Bedrock-Kind	
	0

ROCK Charts	
Igneous Rocks Chart	5-4
Metamorphic Rocks Chart	5-5
Sedimentary And Volcaniclastic Rocks	5-6
Mass Movement (Mass Wasting) Types For Soil Survey.	
North American Geologic Time Scale	5–8
Till Terms	5–9
Pyroclastic Terms	. 5–10
Hierarchical Rank of Lithostratigraphic Units	
References	. 5–13
LOCATION	
Public Land Survey	
Townships and Ranges	
Sections	
Sub-Divisions	
State Plane Coordinate System	6-4
Universal Transverse Mercator (UTM) Rectangular	
Coordinate System	6-4
References	6-5
MICOELLANEOUC	7 4
MISCELLANEOUS	/-1
Examples Of Percent Of Area Covered	
Measurement Equivalents & Conversions	/-2
Metric To English	/-2
English To Metric	/-3
Common Conversion Factors	
Guide To Map Scales And Minimum-Size Delineations	/-/
Common Soil Map Symbols (Traditional)	/-8
FIELD SAMPLING	8_1
Introduction	
Soil Sampling	8 -1
Soil Sample Kinds	8 -1
Reference Samples	
Characterization Samples	
Sampling Strategies	
Field Equipment Checklist	8_2
Examples Of Common Field Sampling Equipment	
References	
INCIDIO GIOGO	0-4
INDEX	9-1

SITE DESCRIPTION

Compiled by: P.J. Schoeneberger, D.A. Wysocki, E.C. Benham, NRCS, Lincoln, NE; W. D. Broderson, NRCS, Salt Lake City, UT.

DESCRIBER(S) NAME

NAME (or initials) - Record the observer(s) who makes the description; e.g., *Erling E. Gamble* or *EEG*.

DATE

MONTH / DAY / YEAR - Record the date of the observations. Use numeric notation (MM, DD, YYYY); e.g., 05/21/2002 (for May 21, 2002).

CLIMATE

Document the prevailing, general weather conditions at the time of observation. (Not a data element in PDP; a site-condition which affects some field methods; e.g., K_{sat}). Record the dominant **Weather Conditions** and **Air Temperature**; e.g., *Rain*, *27* °C.

Weather Conditions	Code
sunny / clear	SU
partly cloudy	PC
overcast	OV
rain	RA
sleet	SL
snow	SN

AIR TEMPERATURE - The ambient air temperature at approximately chest height (in degrees, Celsius or Fahrenheit); e.g., *27* °C.

SOIL TEMPERATURE - Record the ambient **Soil Temperature** and the **Depth** at which it is determined; e.g., 22 °C, 50 cm. (**NOTE**: Soil Taxonomy generally requires a depth of 50 cm.) Soil temperature should only be determined from a freshly excavated surface that reflects the ambient soil conditions. Avoid surfaces equilibrated with air temperatures.

Soil Temperature - Record the soil temperature (in °C or °F).

Soil Temperature Depth - Record the depth at which the ambient soil temperature is measured; e.g., *50 cm*.

LOCATION

Record the geographical location of the point / area of interest as precisely as possible. Latitude and longitude are preferred [record in degrees, minutes, seconds (decimal seconds), direction, and associated datum].

LATITUDE - e.g., 46° 10′ 19.38″ N. Lat.

LONGITUDE - e.g., 95° 23' 47.16" W. Long.

NOTE: Latitude and Longitude are required in NASIS. For other location descriptors (e.g., *Public Land Survey*, *UTM*, *Metes and Bounds*, *State Plane Coordinates*, etc.), see the "Location Section."

DATUM NAME (called **Horizontal_datum_name** in NASIS)- *Critical*: Record the reference datum for latitude and longitude from either topographic map or GPS configuration used; e.g., NAD 1983 (North America Datum, 1983) for most of USA.

TOPOGRAPHIC QUADRANGLE

Record the appropriate topographic map name (i.e., Quadrangle Name) covering the observation site (commonly a USGS topographic map). Include the scale (or map "series") and the year printed; e.g., *Pollard Creek - NW; TX: 1:24,000; 1972.*

SOIL SURVEY SITE IDENTIFICATION NUMBER

An identification number must be assigned if samples are collected for analyses at the National Soil Survey Laboratory (Soil Survey Staff, 1995). This identifier consists of four required and one optional part. These are:

- 1) The letter *S* (for "soil characterization sample") and the four-digit (formerly 2-digit) calendar year; e.g., *S2001* (for 2001).
- The two-character state abbreviation; e.g., OK (for Oklahoma).
 For non-USA samples, use the abbreviation FN.
- The three-digit county FIPS code; e.g., 061 (for Haskell County, OK). For non-USA samples, use the appropriate three-digit GSA world-wide geographical location code (Public Building Service, 1996).
- 4) A three-digit, sequential code to identify the individual pedons sampled within the county or other survey area during any given calendar year; e.g., 005. (NOTE: This sequential code starts over with 001 each January 1.)

 (Optional) A one-character sub-sample code. This is generally used to indicate some relationship (such as satellite samples) between sampling sites; e.g., A.

A complete example is *S2001OK061005A*. [Translation: A pedon sampled for soil characterization during 2001 (*S2001*), from Oklahoma (*OK*), in Haskell County (*061*), the fifth pedon (*005*) sampled in that county during 2001, and it is a satellite sample (*A*) related to the primary pedon.]

COUNTY FIPS CODE

This is the three-digit FIPS code for the county (National Institute of Standards and Technology, 1990) in a U.S. state in which the pedon or site is located. It is usually an odd number; e.g., *061* (for Haskell County, OK). For non-USA samples, enter *FN* followed by the appropriate three-digit GSA world-wide geographical location code (Public Building Service, 1996); e.g., *FN260* (for Canada).

MLRA

This is the one- to three-digit (and one-character sub-unit, if applicable) Major Land Resource Area identifier (SCS, 1981); e.g., *58C* (for Northern Rolling High Plains - Northeastern Part).

TRANSECTS

If the soil description is a point along a transect, record appropriate transect information: **Transect ID, Stop Number, Interval.** In NASIS, additional information can be recorded: **Transect Kind** [random point (-*R*), regular interval (-I)], **Transect Section Method** [biased (-*B*), random, (-*R*)], **Delineation Size** (acres), **Transect Direction** [compass heading; (*)].

TRANSECT ID - This is a four- to five-digit number that identifies the transect; e.g., 0029 (the 29th transect within the survey area).

STOP NUMBER - If the sample/pedon is part of a transect, enter the two-digit stop number along the transect; e.g., *07*. (*NOTE*: NASIS allows up to 13 characters.)

INTERVAL - Record distances between observation points, compass bearings, and GPS coordinates; or draw a route map in the **Field Notes** ("User Defined Section"). In PDP, if the observation is part of a transect, enter the distance (in feet or meters) between points; e.g., 30 m.

SERIES NAME

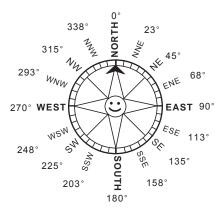
This is the assumed Soil Series name at the time of the description; e.g., *Cecil.* If unknown, enter *SND* for "Series Not Designated". [In NASIS, "SND" is not used; use an appropriate Soil Taxonomic taxa; e.g. Udorthents.] *NOTE*: The <u>field-assigned</u> series name may ultimately change after additional data collection and lab analyses.

GEOMORPHIC INFORMATION

See the "Geomorphology Section" for complete choice lists. Codes are shown following each example. Conventional "codes" traditionally consist of the entire name; e.g., *mountains*.

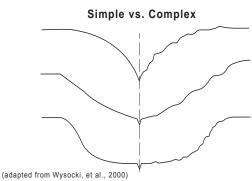
PART 1: PHYSIOGRAPHIC LOCATION

Physiographic Division - e.g., Interior Plains or IN
Physiographic Province - e.g., Central Lowland or CL
Physiographic Section - e.g., Wisconsin Driftless Section or WDS
State Physiographic Area (Opt.) - e.g., Wisconsin Dells
Local Physiographic / Geographic Name (Opt.) - e.g., Bob's Ridge

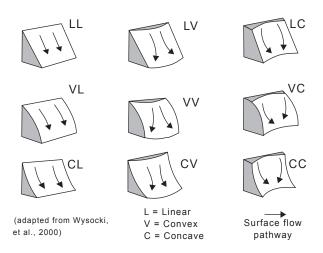

PART 2: GEOMORPHIC DESCRIPTION

Landscape - e.g., Foothills or FH Landform - e.g., Ridge or RI Microfeature - e.g., Mound or M Anthropogenic Feature - e.g., Midden or H

PART 3: SURFACE MORPHOMETRY

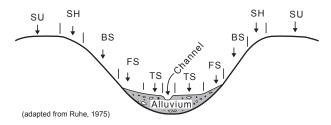

Elevation - The height of a point on the earth's surface, relative to mean sea level (MSL). Use specific units; e.g., 106 m or 348 ft. Recommended methods: Interpolation from topographic map contours; altimeter reading tied to a known datum. **NOTE**: At present, <u>elevational</u> determination by a sole Global Positioning System (GPS) unit is considered unacceptably inaccurate.

Slope Aspect - The compass direction (in degrees and accounting for declination) that a slope faces, looking downslope; e.g., 287°.

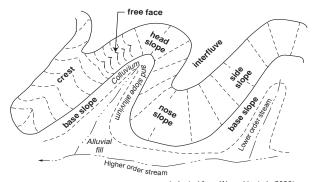


Slope Gradient - The angle of the ground surface (in percent) through the site and in the direction that overland water would flow. Commonly called "slope." Make observations facing downslope to avoid errors associated with some brands of clinometers; e.g., 18%.

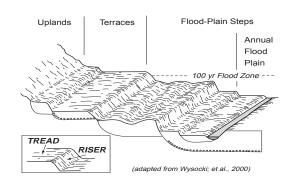
Slope Complexity - Describe the relative uniformity (smooth linear or curvilinear = *simple* or *S*) or irregularity (*complex* or *C*) of the ground surface leading downslope through the point of interest; e.g., *simple* or *S*.



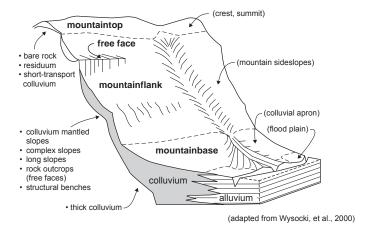
Slope Shape - Slope shape is described in two directions: up-and-down slope (perpendicular to the contour), and across slope (along the horizontal contour); e.g., *Linear, Convex* or *LV*.


Hillslope - Profile Position (Hillslope Position in PDP) - Two-dimensional descriptors of parts of line segments (i.e., slope position) along a transect that runs up and down the slope; e.g., *backslope* or *BS*. This is best applied to transects or points, not areas.

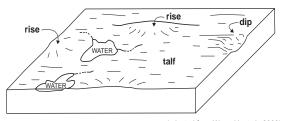
Position	Code
summit	SU
shoulder	SH
backslope	BS
footslope	FS
toeslope	TS


Geomorphic Component - Three-dimensional descriptors of parts of landforms or microfeatures that are best applied to areas. Unique descriptors are available for Hills, Terraces, Mountains, and Flat Plains; e.g., (for Hills) *nose slope* or *NS*.

Hills	Code	
	PDP	NASIS
interfluve	IF	IF
crest	_	CT
head slope	HS	HS
nose slope	NS	NS
side slope	SS	SS
free face	_	FF
base slope	_	BS



(adapted from Wysocki, et al., 2000)


Terraces, Stepped Landforms	Code
riser	RI
tread	TR

Mountains	Code
mountaintop	MT
mountainflank	MF
upper third - mountainflank	UT
center third - mountainflank	CT
lower third - mountainflank	LT
free face	FF
mountainbase	MB

Flat Plains	Code
dip	DP
rise	RI
talf	TF

(adapted from Wysocki, et al., 2000)

- very low gradients (e.g. slope 0-1%)
- · deranged, non-integrated, or incipient drainage network
- "high areas" are broad and low (e.g. slope 1-3%)
- · Sediments commonly lacustrine, alluvial, eolian, or till

Microrelief - Small, relative differences in elevation between adjacent areas on the earth's surface; e.g., *micro-high* or *MH*; or *micro-low* or *ML*.

microhigh	MH
microlow	ML

Drainage Pattern – The arrangement of drainage channels on the land surface; also called drainage network. (See graphics p. 3–42).

Drainage Pattern	Code
annular	_
artificial	_
centripetal	_
dendritic	_
deranged	_
karst	_
parallel	_
pinnate	_
radial	_
rectangular	
thermokarst	_
trellis	

DRAINAGE - An estimate of the natural drainage class (i.e., the prevailing wetness conditions) of a soil; e.g., *somewhat poorly drained* or *SP*.

Drainage Class	Code		
-	PDP	CONV.	
Very Poorly Drained	VP	VP	
Poorly Drained	Р	PD	
Somewhat Poorly Drained	SP	SP	
Moderately Well Drained	MW	MW	
Well Drained	W	WD	
Somewhat Excessively Drained	SE	SE	
Excessively Drained	E	ED	

The following definitions are from the traditional, national criteria for Natural Soil Drainage Classes (Soil Survey Staff, 1993). More specific, <u>regional definitions and criteria vary</u>. (Contact an NRCS State Office for specific, local criteria.)

Very Poorly Drained - Water is at or near the soil surface during much of the growing season. Internal free-water is *very shallow* and *persistent* or *permanent*. Unless the soil is artificially drained, most mesophytic crops cannot be grown. Commonly, the soil occupies a depression or is level. If rainfall is persistent or high, the soil can be sloping.

Poorly Drained - The soil is wet at shallow depths periodically during the growing season or remains wet for long periods. Internal free-water is *shallow* or *very shallow* and *common* or *persistent*. Unless the soil is artificially drained, most mesophytic crops cannot be grown. The soil, however, is not continuously wet directly below plow depth. The water table is commonly the result of *low* or *very low* saturated hydraulic conductivity class or persistent rainfall, or a combination of both factors.

Somewhat Poorly Drained - The soil is wet at a shallow depth for significant periods during the growing season. Internal free-water is commonly *shallow* to *moderately deep* and *transitory* to *permanent*. Unless the soil is artificially drained, the growth of most mesophytic plants is markedly restricted. The soil commonly has a *low* or *very low* saturated hydraulic conductivity class, or a high water table, or receives water from lateral flow, or persistent rainfall, or some combination of these factors.

Moderately Well Drained - Water is removed from the soil somewhat slowly during some periods of the year. Internal free water commonly is *moderately deep* and may be *transitory* or *permanent*. The soil is wet for

only a short time within the rooting depth during the growing season, but long enough that most mesophytic crops are affected. The soil commonly has a *moderately low*, or lower, saturated hydraulic conductivity class within 1 meter of the surface, or periodically receives high rainfall, or both.

Well Drained - Water is removed from the soil readily, but <u>not</u> rapidly. Internal free-water commonly is *deep* or *very deep*; annual duration is not specified. Water is available to plants in humid regions during much of the growing season. Wetness does not inhibit growth of roots for significant periods during most growing seasons.

Somewhat Excessively Drained - Water is removed from the soil rapidly. Internal free water commonly is *very rare* or *very deep*. The soils are commonly coarse-textured, and have *high* saturated hydraulic conductivity, or are *very shallow*.

Excessively Drained - Water is removed from the soil very rapidly. Internal free water commonly is *very rare* or *very deep*. The soils are commonly coarse-textured, and have *very high* saturated hydraulic conductivity class or are *very shallow*.

FLOODING - Estimate the **Frequency, Duration**, and **Months** that flooding is expected; e.g., *rare*, *brief*, *Jan.* - *March*.

Frequency - Estimate how often, type	pically, that it floods.
--------------------------------------	--------------------------

			•
Frequency Class	Code		Criteria: estimated, average number of flood
Class	PDP	NASIS	events per time span ¹
None	NO 2	NO	No reasonable chance (e.g., < 1 time in 500 years)
Very Rare	NO 2	VR	≥ 1 time in 500 years, but < 1 time in 100 years
Rare	RA	RA	1 to 5 times in 100 years
Occasional 3	OC	OC	> 5 to 50 times in 100 years
Frequent 3, 4	FR	FR	> 50 times in 100 years
Very Frequent 4,5		VF	> 50% of all months in year

¹ Flooding Frequency is an estimate of the current condition, whether natural or human-influenced (such as by dams or levees).

² In PDP, *None* class (< 1 time in 100 years) spans both *None* and *Very Rare* NASIS classes.

³ Historically, *Occasional* and *Frequent* classes could be combined and called *Common*; not recommended.

⁴ Very Frequent class takes precedence over Frequent, if applicable.

⁵ The Very Frequent class is intended for tidal flooding.

Duration - Estimate how long, typically, it stays flooded.

Duration Class	Code			Criteria: estimated average
	Conv.	PDP	NASIS	duration per flood event
Extremely Brief Very Brief Brief Long Very Long	EB VB BR LO VL	BE BV B L	EB VB B L VL	0.1 to < 4 hours 4 to < 48 hours 2 to < 7 days 7 to < 30 days ≥ 30 days

Months - Estimate the beginning and ending month(s) of the year that flooding generally occurs; e.g., *Dec. - Feb.*

PONDING - Estimate or monitor the **Frequency**, **Depth**, and **Duration** of standing water. In PDP, also note the months ponding generally occurs. A complete example is: *occasional*, *50 cm*, *brief*, *Feb* - *Apr*.

Frequency - Estimate how often, typically, it ponds.

Frequency Class	Code	Criteria: estimated average # of ponding events per time span
None	NO	< 1 time in 100 years
Rare	RA	1 to 5 times in 100 years
Occasional	OC	> 5 to 50 times in 100 years
Frequent	FR	> 50 times in 100 years

Depth - Estimate the average, representative depth of ponded water at the observation site and specify units; e.g., 1 ft or 30 cm.

Duration - Estimate how long, typically, it stays ponded.

Duration Class	Code			Criteria: estimated average time per
000	Conv.	PDP	NASIS	ponding event
Very Brief	VB	BV	VB	< 2 days
Brief	BR	В	В	2 to < 7 days
Long	LO	L	L	7 to < 30 days
Very Long	VL	LV	VL	≥ 30 days

(SOIL) WATER STATE - (Called **Observed Soil Moisture Status** in NASIS.) Estimate the water state of the soil at the time of observation; e.g., *wet*, *satiated*. Soil temperature must be above 0 °C. To record conditions with

temperatures < 0 °C (frozen water); for permanently frozen conditions, see **Texture Modifiers** or **Terms Used in Lieu of Texture** in the "Profile Description Section." **NOTE**: Criteria have changed.

Water State Class	Code Conv. NASIS		Criteria: tension	Traditional Criteria: tension and field
Dry 1	D	D	> 1500 kPa	> 15 bars of tension ²
				(= 1500 kPa)
Moist 1	М		≤ 1500 kPa to > 1.0 kPa	Former Usage: > 1/3 to 15 bars of tension
			(or > 0.5 kPa 3)	(33 to 1500 kPa) (field
				capacity to wilting point)
Wet	W	M 4	≤ 1.0 kPa	0 - 1/3 bars tension
			(or < 0.5 kPa ³)	(< 33 kPa)
	<u> </u>			(field capacity or wetter)
Wet: Non- satiated ⁵	WN		> 0.01 <u>and</u> ≤ 1.0 kPa (<u>or</u> < 0.5 kPa ³)	No Free Water: Water films are visible; sand grains and peds glisten, but no free water is present
Wet:	WS	W	≤ 0.01 kPa	Free Water:
Satiated 5				Free water easily visible

- Additional subclasses of water state can be recognized for *Dry* and *Moist* classes, if desired (Soil Survey Staff, 1993; p. 91).
- ² Convention assumes 15 bars of tension as the wilting point for most annual, agricultural row-crops. <u>Caution</u>: Various perennials, shrubs, trees, and other native vegetation have wilting points up to 66 bars tension (= 6600 kPa) or more.
- ³ Use the 1 kPa limit for all textures, except those coarser than loamy fine sand (which use 0.5 kPa limit; Soil Survey Staff, 1993; p. 90).
- 4 NASIS uses the same 3 class names (Dry, Moist, Wet) but lumps the "wetnon-satiated" sub-class with the Moist class.
- 5 Satiation vs. Saturation: Satiation implies minor amounts of entrapped air in the smallest pores. True saturation implies no entrapped air. Satiation, for practical purposes, is ≈ saturation. Temporal monitoring of a water table by piezometer or other accepted methods may be needed to verify saturation. Related terms used for classifying soils (i.e., Soil Taxonomy) include: Endosaturation is saturation in all layers to > 200 cm (80 inches). Episaturation requires saturated layers that overlie unsaturated layers within the upper 2 m (80 inches). Anthric saturation, a variant of episaturation, is saturation due to management-induced flooding (e.g., for rice or cranberry production).

DEPTH TO WATER TABLE - Measure or estimate the depth from the ground surface to the stabilized contact with free-standing water in an open bore-hole or well. Historically, record **Seasonal High Water Table - Kind**, and **Frequency** (duration, beginning month, and days); specify units (e.g., cm, ft). If seasonally variable water is absent at time of observation, it is common practice to estimate prevailing water table conditions based upon soil morphology (e.g., presence of Redoximorphic Features of chroma ≤ 2) in lieu of water table monitoring data.

NOTE: Within NRCS's PDP and NASIS databases the traditional designation of **Seasonal High Water Table - Kind** and **Frequency** are replaced. In PDP (PEDON), all water table information is recorded in a temporal table. Record **Depth to Stabilized Free Water** and **Date of Observation**. In NASIS, all water table information is replaced by **(Soil) Water State** (dry, moist or wet), for each layer, at time of observation; e.g., *layer A is moist, layer B is wet, layer C is dry*. For map unit component descriptions, soil water state is recorded, by layer, on a monthly basis in NASIS.

(Seasonal) High Water Table - Kind - Traditional types of intermittent (e.g., seasonal) high water tables (Soil Survey Staff, 1983); obsolete in NASIS.

Kind	Code PDP	Criteria:
apparent	Α	Level of stabilized water in a fresh, unlined borehole.
artesian	_	The final level within a cased borehole to which the water rises above an impermeable layer due to a positive hydrostatic head.
perched	Р	A water table that lies above an unsaturated zone. The water table will fall if the borehole is extended.
ponding 1	_	Standing water in a closed depression on top of the soil.

A kind of intermittent water table, but not a seasonal high water table (Soil Survey Staff, 1983).

VEGETATION / LAND COVER

EARTH COVER - KIND - Record the dominant land cover at the site; e.g., intermixed hardwoods and conifers. (Similar to Landuse in PDP.)

Kind 1	Code	Kind ¹	Code			
ARTIFICIAL COVER (A) - Nonvegetative cover; due to human activity.						
rural transportation - roads, railroads	ARU	urban and built-up - cities, farmsteads, industry	AUR			
BARREN LAND (B) - < 5% ve	getative co	over naturally				
culturally induced - saline seeps, mines, quarries, and oil-waste areas	BCI	other barren - salt flats, mudflats, slickspots, badlands	ВОВ			
permanent snow or ice	BPS	rock	BRK			
		sand or gravel	BSG			
CROP COVER (C) - includes residue) for annual or perent		oping cycle (land prep, crop, c ceous plants.	or crop			
close-grown crop - wheat, rice, oats, and rye; small grains	CCG	row crop - corn, cotton, soybeans, tomatoes, and other truck crops, tulips	CRC			
GRASS / HERBACEOUS COV or forb cover, mosses, licher		· 50% grass, grass-like (sedge non-woody.	/rushes),			
hayland - alfalfa, fescue, bromegrass, timothy	GHL	rangeland, savanna - 10 to 20% tree cover	GRS			
marshland - grasses and grass-like plants	GML	rangeland, shrubby - 20 to 50% shrub cover	GRH			
pastureland, tame - fescues, bromegrass, timothy, and lespedeza	GPL	rangeland, tundra	GRT			
rangeland, grassland; < 10% trees, < 20% shrubs; rangeland used for hayland	GRG	other grass and herbaceous cover	GOH			
SHRUB COVER (S) - > 50% shrub or vine canopy cover.						
crop shrubs - filberts, blueberry, ornamental nursery stock	SCS	native shrubs - shrub live oak, mesquite, sage-brush, creosote bush; rangeland > 50% shrub cover	SNS			
crop vines - grapes, blackberries, raspberries	SCV	other shrub cover	SOS			

TREE COVER (T) - > 25% can natural or planted.	nopy cover	by woody plants,				
conifers - spruce, pine, fir	TCO	swamp - trees, shrubs	TSW			
crop, trees - nuts, fruit, nursery, Christmas trees	TCR	tropical - mangrove and royal palms	TTR			
hardwoods - oak, hickory, elm, aspen	THW	other tree cover	TOC			
intermixed hardwoods and conifers - oak-pine mix						
WATER (W) - water at the soil surface; includes seasonally frozen water.						

¹ Land Cover Kinds are presented at two levels of detail: Bolded table subheadings are the "NASIS - Level 1" choices (NSSH, Part 622.16; Soil Survey Staff, 2001b). Individual choices under the subheadings are the "NASIS - Level 2" choices

PLANT SYMBOL - Record the codes (scientific plant name abbreviations) for the major plant species found at the site (NRCS, 2001b, 2001c); e.g., *ANGE* (Andropogon gerardii or big bluestem). **NOTE**: This is the primary plant data element in NASIS.

PLANT COMMON NAME - Record the common names of the major plant species found at the site [NRCS, 2001c (electronic file)]; e.g., cottonwood, big bluestem. This item may be recorded as a secondary data element to augment the Plant Symbol. CAUTION: Multiple common names exist for some plants; not all common names for a given plant are in the national PLANTS database.

PLANT SCIENTIFIC NAME - Record the scientific plant name along with or in lieu of common names; e.g., *Acer rubrum* (Red Maple). [*NOTE*: Although used in the past, scientific names of plants (Natural Resources Conservation Service, 1995) are not presently recorded by the NRCS; e.g., PDP has no data element for and does not recognize scientific plant names.] (*NOTE*: NASIS codes for common plant names are derived from the scientific names.)

Record the **Kind(s)** and **Lithostratigraphic Unit(s)** of unconsolidated material (regolith) from which the soil is derived. [Note: Lithostratigraphic Units: e.g. Formation, Member, etc.; see p. 5-11; Proposed in NASIS – currently recorded under **Misc. Field Notes.**] If the soil is derived directly from the underlying bedrock (e.g., granite), identify the **Parent Material** as either grus, saprolite, or residuum and then record the appropriate **Bedrock - Kind** choice. Multiple parent materials, if present, should be denoted; e.g., *loess, over colluvium, over residuum*. Use numerical prefixes in the **Horizon** designations to denote different parent materials (lithologic discontinuities); e.g., *A, BE, 2Bt, 2BC, 3C; Peoria Loess, or Calvert Formation*.

KIND - e.g., saprolite, loess, colluvium.

Kind ¹	Code		Kind ¹	(Code	
	PDP	NASIS		PDP	NASIS	
EOLIAN DEPOSITS (nor	-volca	anic)				
eolian deposit	Е	EOD	loess, calcareous	_	CLO	
eolian sands	S	EOS	loess, noncalcareous	_	NLO	
loess	W	LOE	parna	_	PAR	
GLACIAL DEPOSITS						
drift	D	GDR	till, basal	_	BTI	
glaciofluvial deposit	_	GFD	till, flow	_	FTI	
glaciolacustrine deposit	_	GLD	till, lodgement	_	LTI	
glaciomarine deposit	_	GMD	till, melt-out	_	MTI	
outwash	G	OTW	till, subglacial	_	GTI	
supraglacial debris-flow	_	SGF	till, supraglacial	_	UTI	
till	Т	TIL	till, supraglacial meltout	_	PTI	
till, ablation	_	ATI				
IN-PLACE DEPOSITS (no	on-tra	nsporte	d)			
grus ²	_	GRU	saprolite 2	_	SAP	
residuum 2	Х	RES				
MASS MOVEMENT DEP	OSITS	³ (See I	Mass Movement Types tal	bles, p	. 5-7)	
MISCELLANEOUS MASS	MOV	EMENT	DEPOSITS			
colluvium	V	COL	slump block	_	SLB	
scree	- SCR		talus	_	TAL	
MASS MOVEMENT DEPO	OSIT (Unspeci	fied Landslide)	_	MMD	

MASS MOVEMENT DEPOSITS (continued)

MASS MOVEMENT DET	000	(00///////	aca ₎		
COMPLEX LANDSLIDE DEPOSITS					CLD
FALL DEPOSITS				_	FAD
debris fall deposit	_	DLD	soil fall deposit (=earth fall)	_	SFD
rock fall deposit	_	RFD			
FLOW DEPOSITS				_	FLD
earthflow deposit	_	EFD	debris avalanche deposit	_	DAD
creep deposit		CRP	debris flow deposit	_	DFD
mudflow deposit		MFD	lahar — — — — —		LAH
sand flow deposit		RWD	rockfall avalanche deposit	_	RAD
solifluction deposit		SOD			
SLIDE DEPOSITS				_	S
Rotational Slide deposit	_	RLD	Translational Slide dep.	_	TSD
rotational debris slide deposit		RDD	translational debris slide deposit		TDD
rotational earth slide deposit		RED	translational earth slide deposit	_	TED
rotational rock slide deposit		RRD	translational rock slide deposit		TRD
			block glide deposit		BGD
SPREAD DEPOSITS (=la	teral s	pread)		_	LSD
debris spread deposit	_	DPD	rock spread deposit	_	RSD
earth spread deposit	_	ESD			
TOPPLE DEPOSITS				_	TOD
debris topple deposit	_	DTD	rock topple deposit	_	RTD
earth topple (=soil topple)	_	ETD			
MISCELLANEOUS DEP	OSITS	;			
cryoturbate	_	CRY	mine spoil or earthy fill	F	MSE
diamicton	_	DIM			
ORGANIC DEPOSITS 4					
coprogenic materials	_	COM	organic, grassy materials	_	OGM
diatomaceous earth	_	DIE	organic, herbaceous mat.	_	OHM
marl	_	MAR	organic, mossy materials	_	OMM
organic materials	0	ORM	organic, woody materials	_	OWM

VOLCANIC DEPOSITS (unconsolidated; eolian and mass movement)							
ash (< 2 mm)	Н	ASH	cinders (2-64 mm)	_	CIN		
ash, acidic	_	ASA	lahar	-	LAH		
			(volcaniclastic mudflow)				
ash, andesitic	_	ASN	Iapilli	—	LAP		
			(2-64 mm, > 2.0 sg) ⁵				
ash, basaltic	_	ASB	pyroclastic flow	_	PYF		
ash, basic	_	ASC	pyroclastic surge	_	PYS		
ash flow (pyroclastic)	_	ASF	pumice (< 1.0 sg) 5	_	PUM		
bombs (> 64 mm)	_	BOM	scoria (> 2.0 sg) ⁵	_	SCO		
			tephra (all ejecta)	_	TEP		
WATER LAID or TRANS	PORTI	ED DEP	OSITS				
alluvium	Α	ALL	lacustrine deposit	L	LAD		
backswamp deposit	_	BSD	marine deposit	М	MAD		
beach sand	_	BES	overbank deposit	_	OBD		
estuarine deposit	Z	ESD	pedisediment	_	PED		
fluviomarine deposit	_	_	slope alluvium	_	SAL		
greensands	_	_	valley side alluvium	_	VSA		

- Parent material definitions are found in the "Glossary of Landforms and Geologic Terms", NSSH - Part 629 (Soil Survey Staff, 2001), or the "Glossary of Geology" (Jackson, 1997).
- 2 Use the most precise term for the in situ material. Residuum is the most generic term.
- ³ Cruden and Varnes, 1996.
- These generic terms refer to the dominant origin of the organic materials or deposits from which the organic soil has formed (i.e. parent material) (Soil Survey Staff, 1993). These terms partially overlap with those recognized in Soil Taxonomy (terms which refer primarily to what the organic material presently is); see the "Diagnostic Horizons" or "Properties" table.
- 5 sg = specific gravity = the ratio of a material's density to that of water [weight in air / (weight in air - weight in water)].

BEDROCK

Describe the nature of the continuous hard rock underlying the soil. Specify the **Kind**, **Fracture Interval**, **Hardness**, and **Weathering Class**. Also record Lithostratigraphic unit(s) if possible (e.g. Formation, Member, etc.; — see p. 5–11); e.g. *Dakota Formation*. Proposed in NASIS; currently recorded under **Misc**. **Field Notes**.

KIND - e.g., limestone.

Vinal 1

Kind ¹	Code		Kind ¹	Code					
	PDP	NASIS		PDP	NASIS				
IGNEOUS - INTRUSIVE	IGNEOUS - INTRUSIVE								
anorthosite	_	ANO	pyroxenite	-	PYX				
diabase	_	DIA	quartz-diorite	-	QZD				
diorite	_	DIO	quartz-monzonite	_	QZM				
gabbro	_	GAB	syenite	_	SYE				
granite	I4	GRA	syenodiorite	-	SYD				
granodiorite	_	GRD	tachylite	_	TAC				
monzonite	_	MON	tonalite	_	TON				
peridotite	_	PER	ultramafic rock ²	-	UMU				
IGNEOUS - EXTRUSIVE		•			•				
a'a lava	P8	AAL	pahoehoe lava	P9	PAH				
andesite	I7	AND	pillow lava	_	PIL				
basalt	I6	BAS	pumice (flow, coherent)	E6	PUM				
block lava	_	BLL	rhyolite	_	RHY				
dacite	_	DAC	scoria (coherent mass)	E7	SCO				
latite	_	LAT	trachyte	_	TRA				
obsidian	_	OBS							
IGNEOUS - PYROCLASTI	С								
ignimbrite	_	IGN	tuff, welded	_	TFW				
pyroclastics (consolidated)	P0	PYR	tuff breccia	P7	TBR				
pyroclastc flow	_	PYF	volcanic breccia	P4	VBR				
pyroclastic surge	_	PYS	volcanic breccia, acidic	P5	AVB				
tuff	P1	TUF	volcanic breccia, basic	P6	BVB				
tuff, acidic	P2	ATU	volcanic sandstone	_	VST				
tuff, basic	P3	BTU							

METAMORPHIC							
amphibolite	_	AMP	metavolcanics	_	MVO		
gneiss	M1	GNE	mica schist	_	MSH		
granofels	_	GRF	migmatite	_	MIG		
granulite	_	GRL	mylonite	_	MYL		
greenstone	_	GRE	phyllite	_	PHY		
hornfels	_	HOR	schist	M5	SCH		
marble	L2	MAR	serpentinite	M4	SER		
metaconglomerate	_	MCN	slate	M8	SLA		
metaquartzite	M9	MQT	soapstone (talc)	—	SPS		
metasedimentary rocks 2	_	MSR					
SEDIMENTARY - CLAST	ics						
arenite	_	ARE	mudstone	_	MUD		
argillite	_	ARG	orthoquartzite	_	OQT		
arkose	A2	ARK	porcellanite	_	POR		
breccia, non-volcanic (angular fragments)	_	NBR	sandstone	A0	SST		
breccia, non-volcanic, acidic	_	ANB	sandstone, calcareous	A4	CSS		
breccia, non-volcanic, basic	_	BNB	shale	H0	SHA		
claystone	_	CST	shale, acid	_	ASH		
conglomerate (rounded fragments)	C0	CON	shale, calcareous	H2	CSH		
conglomerate, calcareous	C2	CCN	shale, clayey	Н3	YSH		
fanglomerate	_	FCN	siltstone	T0	SIS		
glauconitic sandstone	_		siltstone, calcareous	T2	CSI		
graywacke	_	GRY					
EVAPORITES, ORGANICS, AND PRECIPITATES							
chalk	L1	CHA	limestone, arenaceous	L5	ALS		
chert	_	CHE	limestone, argillaceous	L6	RLS		
coal	_	COA	limestone, cherty	L7	CLS		
dolomite (dolostone)	L3	DOL	limestone, phosphatic	L4	PLS		
gypsum	_	GYP	travertine	_	TRV		
limestone	L0	LST	tufa	_	TUA		

INTERBEDDED (alternating layers of different sedimentary lithologies)								
limestone-sandstshale B1 LSS sandstone-shale B5 SSH								
limestone-sandstone	B2	LSA	sandstone-siltstone	B6	SSI			
limestone-shale	В3	LSH	shale-siltstone	В7	SHS			
limestone-siltstone	limestone-siltstone B4 LSI							

Definitions for kinds of bedrock are found in the "Glossary of Landforms and Geologic Terms", NSSH - Part 629 (Soil Survey Staff, 2001), or in the "Glossary of Geology" (Jackson, 1997).

FRACTURE INTERVAL CLASS - Describe the dominant (average) horizontal spacing between vertical joints (geogenic cracks or seams) in the bedrock layer.

Average Distance Between Fractures	Code
< 10 cm	1
10 to < 45 cm	2
45 to < 100 cm	3
100 to < 200 cm	4
≥ 200 cm	5

BEDROCK HARDNESS (Obsolete — used in PDP. NASIS now uses **Rupture Resistence-Cementation** classes and criteria.)

Hardness Class Code		Criteria ¹			
Hard	Н	Lithic contact criteria			
Soft	S	Paralithic contact criteria			

¹ See Soil Taxonomy (Soil Survey Staff, 1975).

WEATHERING CLASS - The relative extent to which a bedrock has weathered as compared to its presumed, non-weathered state.

Class	Code	Criteria
Slight	SL	
Moderate	MO	[Not Available]
Strong	ST	

DEPTH (**TO BEDROCK**) - Record the depth (cm) from the ground surface to the contact with coherent (continuous) bedrock.

² Generic term; use only with regional or reconnaissance surveys (Order 3, 4).

EROSION

Estimate the dominant kind and magnitude of accelerated erosion at the site. Specify the **Kind** and **Degree**.

KIND -

Kind	Code		Criteria ¹
	PDP NASIS		
wind	I	I	Deflation by wind
water:	W		Removal by running water
sheet		S	Even soil loss, no channels
rill		R	Small channels ²
gully		G	Big channels ³
tunnel		Т	Subsurface voids within soil that enlarge by running water
			(i.e. piping)

- ¹ Soil Survey Staff, 1993, p. 82.
- ² Small, runoff channels that can be obliterated by conventional tillage.
- ³ Large, runoff channels that cannot be obliterated by conventional tillage.

DEGREE CLASS -

Class	Code	Criteria: Estimated % loss of the original A & E horizons or, the estimated loss of the upper 20 cm (if original, combined A & E horizons were < 20 cm thick). 1
None	0	0 %
1	1	> 0 up to 25%
2	2	25 up to 75%
3	3	75 up to 100%
4	4	> 75 % and total removal of A

¹ Soil Survey Staff; 1993, pp 86-89.

SURFACE RUNOFF - Surface runoff (Hortonian flow, overland flow) is the flow of water from an area that occurs over the surface of the soil. Surface runoff differs from internal flow or throughflow that results when infiltrated water moves laterally or vertically within a soil, above the water table. "The Index (of) Surface Runoff Classes" are relative estimates of surface runoff based on slope gradient and saturated hydraulic conductivity (K_{sat}). This index is specific to the following conditions (Soil Survey Staff, 1993).

- The soil surface is assumed to be bare.
- The soil is free of ice.
- · Retention of water by ground surface irregularities is negligible or low.
- Infiltration is assumed to be at the steady ponded infiltration stage.
- Water is added to the soil by precipitation or snowmelt that yields 50 mm in 24 hours with no more than 25 mm in any 1-hour period.
- Antecedent soil water state is assumed to be very moist or wet to: a)
 the base of the solum; b) a depth of 1/2 m; or c) through the horizon that
 has the minimum K_{sat} within the top 1 meter; whichever is the least
 depth.

Use the following table and the above conditions to estimate "The Index (of) Surface Runoff Class" for the site. If seasonal or permanent, internal freewater occurs a depth of ≤ 50 cm (very shallow and shallow Internal Freewater classes), use a K_{sat} of Very Low. If seasonal or permanent, internal free-water is deeper than 50 cm, use the appropriate K_{sat} from the table. In PDP, if estimating runoff from vegetated areas, define and record under User Defined Property.

Index (of) Surface Runoff Classes									
	Saturated Hydraulic Conductivity (K _{sat}) Class ¹								
		Very High High Mod. High Mod. Low Low Very Low							
Slope Gradient Percent	≥ 36	3.6 to < 36	0.36 to < 3.6	0.036 to < 0.36	0.0036 to < 0.036	< 0.0036			
Concave	N N N VL VL L	N N VL L L	N N L M M	N L M H H	N M H VH VH VH	N H VH VH VH VH			

 $^{^{\}rm 1}$ This table is based on the minimum $\rm K_{sat}$ occurring within 1/2 m of the soil surface. If the minimum $\rm K_{sat}$ for the soil occurs between 1/2 to 1 m,

the runoff estimate should be reduced by one class (e.g., *Medium* to *Low*). If the minimum K_{sat} for the soil occurs below 1 meter, use the lowest K_{sat} class that occurs within 1 m of the surface.

Index (of) Surface Runoff Class Names	Code
Negligible	N
Very Low	VL
Low	L
Medium	М
High	Н
Very High	VH

SURFACE FRAGMENTS (formerly Surface Stoniness)

Record the amount of surface fragment ¹ cover (either as a class or as a numerical percent), as determined by either a "point count" or "line-intercept" method. In NASIS, additional details can be recorded: Surface Fragment Kind, (use "Rock Fragment - Kind Table"), Mean Distance Between Fragments (edge to edge), Shape (FL-flat or NF-nonflat), Size, Roundness (use classes and criteria found in "Rock Fragment - Roundness Table"), and Rock Fragment - Rupture Resistance.

Surface Fragment Class ¹	Code		Criteria:	
	Conv ²	NASIS	Percentage of surface covered	
Stony or Bouldery	1	%	0.01 to < 0.1	
Very Stony or Very Bouldery	2	%	0.1 to < 3	
Extremely Stony or Ext. Bouldery	3	%	3 to < 15	
Rubbly	4	%	15 to < 50	
Very Rubbly	5	%	≥ 50	

- 1 This data element is also used to record large wood fragments (e.g., tree trunks) on organic soils, if the fragments are a management concern and appear to be relatively permanent.
- ² Historically called Surface Stoniness classes (now Surface Fragment classes). Use as a map-unit phase modifier is restricted to stone-sized fragments, or larger (> 250 mm; Soil Survey Staff, 1951).

DIAGNOSTIC HORIZONS or PROPERTIES

Identify the **Kind** and **Upper** and **Lower Depths** of occurrence of Soil Taxonomic diagnostic horizons and properties; e.g., *mollic epipedon*; 0 - 45 cm. Multiple features per horizon can be recorded. (Called **Diagnostic Feature-Kind** in PDP.) In NASIS (**Diagnostic Horizon/Feature**) record **Kind**; **Thickness, Representative Value** (RV – high, low) can also be recorded.

KIND - (see definitions in current Keys to Soil Taxonomy)

Kind	Code		Kind	С	ode				
	PDP	NASIS		PDP	NASIS				
EPIPEDONS (Diagnostic Surface Horizons)									
anthropic	Α	AN	mollic	М	MO				
folistic	_	FO	ochric	0	OC				
histic	Н	HI	plaggen	Р	PL				
melanic	ME	ME	umbric	U	UM				
DIAGNOSTIC SUBSURFACE HORIZONS									
agric	R	AG	natric	N	NA				
albic	Q	AL	ortstein	_	OR				
argillic	Т	AR	oxic	Х	OX				
calcic	С	CA	petrocalcic	Е	PE				
cambic	В	CM	petrogypsic	J	PG				
duripan	Z	DU	placic	K	PA				
fragipan	F	FR	salic	Υ	SA				
glossic	TO	GL	sombric	I	SO				
gypsic	G	GY	spodic	S	SP				
kandic	KA	KA	sulfuric	V	SU				

(continued)

DIAGNOSTIC PROPERTIES - MINERAL SOILS					
abrupt textural change	AC	AC	gelic materials 2	_	GM
albic materials	_	AM	glacic layer 2	_	GL
albic materials, interfingering	IF	AI	lamella / lamellae	_	LA
andic soil properties	AN	AP	lithic contact 2	L	LC
anhydrous conditions	_	AH	paralithic contact 2	W	PC
aquic conditions 2	_	AQ	paralithic materials 2	_	PM
carbonates, secondary ¹	LI	SC	permafrost ²	PF	PF
cryoturbation 2	_	CR	petroferric contact	PC	TC
densic contact 2	_	DC	plinthite	PL	ΡI
densic materials 2	_	DM	slickensides	SL	SS
durinodes	D	DN	sulfidic materials 2	SU	SM
fragic soil properties	_	FP			
DIAGNOSTIC PROPERTIES - ORGANIC SOILS (also see 2's above)					
fibric soil materials	FI	FM	limnic materials :	LM	LM
hemic soil materials	HE	HM	coprogenous earth	<u>_c</u> o	_co_
humilluvic materials	HU	UM	diatomaceous earth	_DI	_DI
sapric soil materials	SA	RM	marl	MA	MA

¹ Secondary carbonates, replaces "soft, powdery lime". NOTE: Gilgai (GI in PDP) is no longer a diagnostic feature in Soil Taxonomy.

DEPTH - Document the zone of occurrence for a diagnostic horizon or property, as observed, by recording the upper and lower depth and specify units; e.g., 22 - 39 cm. Record **Top Depth** and **Bottom Depth**.

REFERENCES

References for this "Site Description Section" are combined with those at the end of the "Profile / Pedon Description Section" 2-79.

² Diagnostic Properties, materials, or conditions that can occur in either mineral or organic soils.

PROFILE / PEDON DESCRIPTION

Compiled by: D.A. Wysocki, P.J. Schoeneberger, E.C. Benham, NRCS, Lincoln, NE; W. D. Broderson, NRCS, Salt Lake City, UT.

OBSERVATION METHOD

For each layer, indicate the type and relative extent of the exposure upon which the primary observations are made. (Examples of common sampling devices are included in the "Field Sampling Section.") Describe **Kind**, **Relative Size**.

KIND -

Kind	Code	Criteria: Types (common size or ranges)
"Disturbed" Samples		
bucket auger	BA	e.g., open, closed, sand, mud buckets (5-12 cm diam.)
screw auger	SA	e.g., external thread hand augers, power (flight) auger (2-30 cm diam.)
"Undisturbed" Samples		
push tube	PT	e.g., handheld, hydraulic, hollow stem (2-10 cm diam.)
shovel "slice" 1	SS	e.g., undisturbed block extracted with a shovel (sharpshooter: 20 x 40 cm)
WALL / FLOOR - "Undistu	irbed" A	rea or Exposure
small pit	SP	e.g., hand dug (< 1 m x 2 m)
trench	TR	e.g., backhoe, pipeline (> 1 m x 2 m)
beveled cut	BC	e.g., roadcuts graded to < 60% slope
cut	CU	e.g., roadcut, streambank, medium- sized borrow pit wall > 60% slope (e.g., > 4 m, < 33 m)
large open pit or quarry	LP	large borrow pit or quarry with large or irregular banks (e.g., > 33 m)

¹ Field method used for hydric soil investigations.

RELATIVE SIZE (of exposure) - Record the approximate size of the exposure observed. Use cm for "Drill Cores" and m for "Wall/Floor" observations; e.g., bucket auger, 3 cm; trench wall, 3 m. (**NOTE**: Common size range for each method is indicated in the "Criteria" column of the "Observation Method - Kind Table." These dimensions are approximate; not intended to be precise.)

TAXONOMIC CLASSIFICATION - After completely describing the soil, classify the pedon as thoroughly as possible (to the lowest level). See most current version of Soil Taxonomy, Keys to Soil Taxonomy or NASIS for complete choice list; e.g., *fine, mixed, active, mesic, Typic Haplohumult.*

HORIZON NOMENCLATURE

Use capital letters to identify master horizons; e.g., *A*, *B*. Use suffixes (lowercase letters) to denote additional horizon characteristics or features; e.g., *Ap*, *Btk*. [For more detailed criteria, see the "Soil Taxonomy Section;" for complete definitions see Soil Taxonomy (Soil Survey Staff, 1998, 1999)]. Label a horizon only <u>after</u> all morphology is recorded.

MASTER, TRANSITIONAL AND COMMON HORIZON COMBINATIONS 1 -

Horizon	Criteria
	(expanded details listed in Soil Taxonomy Section)
0	Organic soil materials (not limnic)
Α	Mineral; organic matter (humus) accumulation, loss of Fe, Al, clay
AB (or AE)	Dominantly A horizon characteristics but also contains some characteristics of the B (or E) horizon
A/B (or A/E) (or A/C)	Discrete, intermingled bodies of A and B (or E, or C) material; majority of horizon is A material
AC	Dominantly A horizon characteristics but also contains some characteristics of C horizon
E	Mineral; loss of Fe, Al, clay, or organic matter
EA (or EB)	Dominantly E horizon characteristics but also contains some attributes of the A (or B) horizon
E/A (or E/B)	Discrete, intermingled bodies of E and A horizon (or E and B) material; majority of horizon is E material
E and Bt (or B and E)	Thin lamellae (Bt) within a dominantly E horizon (or thin E within dominantly B horizon)
BA (or BE)	Dominantly B characteristics but also contains some attributes of A (or E) horizon
B/A (or B/E)	Discrete, intermingled bodies of B and A (or E) material; majority of horizon is B material
В	Subsurface accumulation of clay, Fe, Al, Si, humus, CaCO ₃ , CaSO ₄ ; or loss of CaCO ₃ ; or accumulation of sesquioxides; or subsurface soil structure
BC	Dominantly B horizon characteristics but also contains some characteristics of the C horizon
B/C	Discrete, intermingled bodies of B and C material; majority of horizon is B material

CB (or CA)	Dominantly C horizon characteristics but also contains some characteristics of the B (or A) horizon
C/B (or C/A)	Discrete, intermingled bodies of C and B (or A) material; majority of horizon is C material
С	Little or no pedogenic alteration, unconsolidated earthy material, soft bedrock
L	Limnic soil materials ²
R	Bedrock, Strongly Cemented to Indurated
W	A layer of liquid water (W) or permanently frozen water (Wf) within the soil (excludes water/ice above soil)

Refer to the "Soil Taxonomy Section" for older horizon nomenclature.
 NRCS Soil Classification Staff, 1999; personal communication.

HORIZON SUFFIXES - Historically referred to as "Horizon Subscripts," and more recently as "Subordinate Distinctions." (Historical nomenclature and conversions are shown in the "Soil Taxonomy Section.")

Horizon	Criteria
Suffix ¹	(expanded details listed in Soil Taxonomy Section)
а	Highly decomposed organic matter
b	Buried genetic horizon (not used with C horizons)
С	Concretions or nodules
СО	Coprogenous earth (Used only with L) ²
d	Densic layer (physically root restrictive)
di	Diatomaceous earth (Used only with L) ²
е	Moderately decomposed organic matter
f	Permanently frozen soil or ice (permafrost); continuous, subsurface ice; not seasonal ice
ff	Permanently frozen soil ("Dry" permafrost); no continuous ice; not seasonal ice
g	Strong gley
h	Illuvial organic matter accumulation
i	Slightly decomposed organic matter
j	Jarosite accumulation
jj	Evidence of cryoturbation
k	Pedogenic carbonate accumulation
m	Strong cementation (pedogenic, massive)
ma	Marl (Used only with L) ²
n	Pedogenic, exchangeable sodium accumulation

0	Residual sesquioxide accumulation (pedogenic)
р	Plow layer or other artificial disturbance
q	Secondary (pedogenic) silica accumulation
r	Weathered or soft bedrock
S	Illuvial sesquioxide accumulation
SS	Slickensides
t	Illuvial accumulation of silicate clay
V	Plinthite
w	Weak color or structure within B (used only with B)
х	Fragipan characteristics
у	Pedogenic accumulation of gypsum
Z	Pedogenic accumulation of salt more soluble than gypsum

¹ Keys to Soil Taxonomy, 8th Ed., (Soil Survey Staff, 1998).

OTHER HORIZON MODIFIERS -

Numerical Prefixes (2, 3, etc.) - Used to denote lithologic discontinuities. By convention, 1 is understood but is not shown; e.g., *A, E, Bt1*, *2Bt2*, *2BC*, *3C1*, *3C2*.

Numerical Suffixes - Used to denote subdivisions within a master horizon; e.g., *A1*, *A2*, *E*, *Bt1*, *Bt2*, *Bt3*, *Bs1*, *Bs2*.

The Prime (´) - Used to indicate the second occurrence of an identical horizon descriptor(s) in a profile or pedon; e.g., *A, E, Bt, E´Btx, C*. The prime does not indicate either buried horizons (which are denoted by a lower case "b"; e.g., *Btb*), or lithologic discontinuities (denoted by numerical prefixes). Double and triple primes are used to denote subsequent occurrences of horizon descriptors in a pedon; e.g., *A, E, Bt, E´, Btx, E´', Cd*.

DIAGNOSTIC HORIZONS - See the "Diagnostic Horizons Table" or "Properties Table", in the "Site Description Section".

HORIZON DEPTH - Record the depths of both the upper and lower boundary for each horizon; specify units (centimeters preferred); e.g., 15-24 cm. Begin (zero datum) at the ground surface¹, which is not necessarily the mineral surface. (**NOTE**: Prior to 1993, the zero datum was at the top of the mineral surface, except for thick organic layers such as a peat or muck. Organic horizons were recorded as above and mineral horizons recorded as below, relative to the mineral surface.)

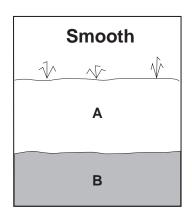
² NRCS Soil Classification Staff, 1999; personal communication.

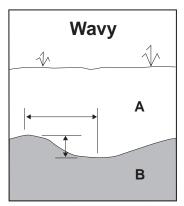
Example: Zero Datum for the same horizons

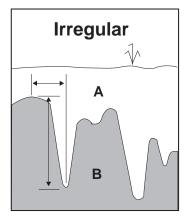
At Present: Oe 0 - 5 cm, A 5 - 15 cm, E 15 - 24 cm Before 1993: Oe 5 - 0 cm, A 0 - 10 cm, E 10 - 19 cm

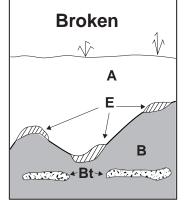
- Conventionally, the "soil surface" is considered to be the top boundary of the first layer that can support plant / root growth. This equates to:
 - a) (for bare mineral soil) the air/fine earth interface:
 - b) (for vegetated mineral soil) the upper boundary of the first layer that can support root growth;
 - c) (for organic mantles) the same as b) but <u>excludes</u> freshly fallen plant litter, and includes litter that has compacted and begun to decompose; e.g., Oi horizon:
 - d) (for submerged soil) the same as b) but refers to the water/soil contact and extends out from shore to the limit of emergent, rooted plants;
 - e) (for rock mulches; e.g., desert pavement, scree) the same as a) unless the areal percentage of surface rock coverage is greater than 80%, the top of the soil is the mean height of the top of the rocks.

HORIZON THICKNESS - Record the average thickness and range in thickness of horizon; e.g., 15 cm (12 - 21 cm).

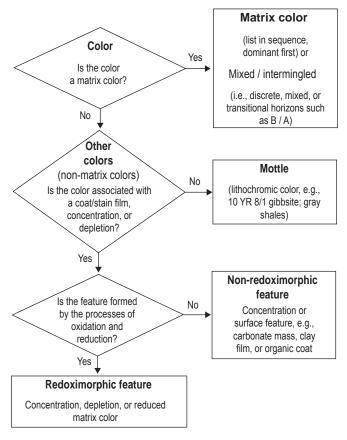

HORIZON BOUNDARY - Record **Distinctness** and **Topography** of horizon boundary. (In NASIS, Distinctness in called Boundary Distinctness). Distinctness is the distance through which one horizon grades into another. Topography is the lateral undulation and continuity of the boundary between horizons. A complete example is: *clear*, *wavy*, or *C,W*.


Distinctness


Distinctness	Code		Criteria:
Class	PDP	NASIS	thickness
Very Abrupt	_	V	< 0.5 cm
Abrupt	Α	Α	0.5 to < 2 cm
Clear	С	С	2 to < 5 cm
Gradual	G	G	5 to < 15 cm
Diffuse	D	D	≥ 15 cm


Topography - Cross-sectional shape of the contact between horizons.

Topography	Code	Criteria
Smooth	S	Planar with few or no irregularities
Wavy	W	Width of undulation is > than depth
Irregular	I	Depth of undulation is > than width
Broken	В	Discontinuous horizons; discrete but intermingled, or irregular pockets



DECISION FLOWCHART FOR DESCRIBING SOIL COLORS - Use the following chart to decide how and with which data elements the color patterns of a soil or soil feature should be described.

NOTE: Reduced Matrix color is described as a Matrix Color and in the associated "(Soil Color) - Location or Condition Described Table."

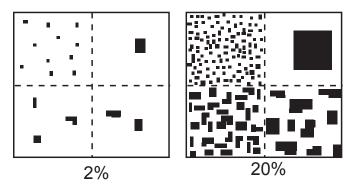
(SOIL) MATRIX COLOR - Record Color(s), (Soil Color) Moisture State, Location or Condition. (In PDP, also record Percent of Horizon, if more than one matrix color is described.)

(Soil) Matrix Color - (Soil) Color - Identify the color(s) of the soil matrix with Munsell ® notation (**Hue, Value, Chroma**); e.g., 10YR 3/2. For Neutral colors, chroma is zero but not shown; e.g., N 4/. Other Gley colors use appropriate notation (see Munsell® Gley pages; e.g., 5GY 6/1). For narrative descriptions (Soil Survey Reports, Official Series Descriptions) both the verbal name and the Munsell® notation are given; e.g., dark brown, 10YR 3/3.

(Soil) Matrix Color - Moisture State - Record the moisture condition of the soil described; e.g., *moist*. (Not to be confused with Soil Water State.)

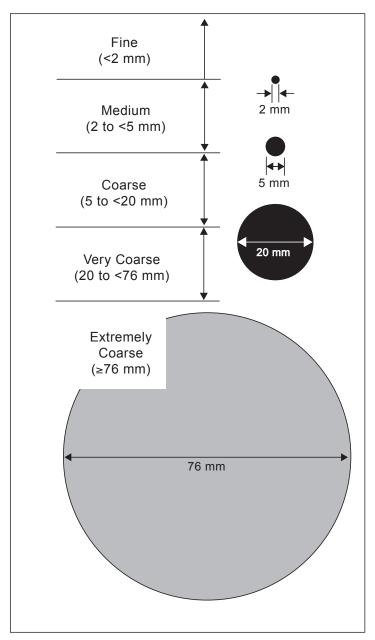
Moisture State	Code
Dry	D
Moist	М

(Soil) Matrix Color - Location or Condition - Record pertinent circumstances of the color described (called Color Physical State in NASIS).


Color Location or Condition	Co	de	
	PDP	NASIS	
COLOR LOCATION			
interior (within ped)	1	IN	
exterior (ped surface)	2	EX	
COLOR, MECHANICAL CONDITION			
broken Face	8	BF	
crushed	3	CR	
rubbed (used only with Organic Matter)	9	RU	
COLOR, REDOXIMORPHIC CONDITION			
oxidized ¹	5	OX	
reduced ²	_	RE	
COLOR, INTRICATE MULTICOLORED PATTERN			
variegated ³	_	VA	

- Soil that is reduced in situ, but oxidizes (changes color) after extraction and exposure to air. A mineral example is vivianite. NOTE: Not used for soil that's normally oxidized in place. For indicators of reduction see Redoximorphic Features.
- Color immediately after extraction from a reduced environment, prior to oxidation; e.g., FeS. Also used to record Reduced Matrix.
- Color pattern is too intricate (banded or patchy) with numerous, diverse colors to credibly identify dominant matrix colors.

MOTTLES - Describe mottles (areas of color that differ from the matrix color). These colors are commonly lithochromic or lithomorphic (attributes retained from the geologic source rather than from pedogenesis; e.g., gray shale). Mottles exclude: Redoximorphic Features (RMF) and Ped and Void Surface Features (e.g., clay films). Record **Quantity Class** (in NASIS/PDP, estimate a numerical value "Percent of Horizon Area Covered"), **Size, Contrast, Color**, and **Moisture State** (D or M). **Shape** is an optional descriptor. A complete example is: *few, medium, distinct, reddish yellow, moist, irregular mottles* or *f, 2, d, 7.5 YR 7/8, m, z, mottles*.


Mottles - Quantity (Percent of Area Covered)

Quantity	Code		Criteria:	
Class	Conv.	NASIS	range in percent	
Few	f	%	< 2% of surface area	
Common	С	%	2 to < 20% of surface area	
Many	m	%	≥ 20% of surface area	

Mottles - Size - Record mottle size class. Use length if it's greater than 2 times the width; use width if the length is less than two times the width. Length is the greater of the two dimensions. (New size classes to be consistent with the new RMF size classes.)

Size Class	Code	Criteria
Fine	1	< 2 mm
Medium	2	2 to < 5 mm
Coarse	3	5 to < 20 mm
Very Coarse	4	20 to < 76 mm
Extremely Coarse	5	≥ 76 mm

Mottles - Contrast - Record the color difference between the mottle and the dominant matrix color. Use this table or the following chart to express the difference. [1st table: Obsolete —shown here for historical purposes]

Contrast Class	Code	Difference in Color Between Matrix and Mottle Hue ¹ Value Chroma				
2	_					
Faint ²	F	same page	0 to ≤2	and	≤ 1	
Distinct	D	same page	>260 4	and	< 4	
				<u>or</u>		
		L_@0	<43	and	> 1 to < 4	
		1 page		and	≤ 1	
Prominent	Р	samé page	3 3 3 3 3 3 3 3 3 3	or	≥ 4	
		1 page	\(\sqrt{2}\)2	or	>1	
		≥ 2 pages	≤ 0	or	≥ 0	

One Munsell® Color Book page = 2.5 hue units. Table contents compiled from material in or intended by the Soil Survey Manual (Soil Survey Staff, 1993).

Contrast Class	Code	Difference in Color Between Matrix and Mottle (△ means "difference between")				
		Hue (h)	Value (v)		Chroma (c)	
Faint ¹	F	$\Delta h = 0;$	$\Delta V \leq 2$	and	$\Delta c \leq 1$	
		Δh = 1;	ΔV ≤ 1	and	$\Delta c \leq 1$	
		∆h = 2;	$\Delta v = 0$	and	$\Delta c = 0$	
		$\Delta h = 0;$	$\Delta V \leq 2$	and	$\Delta c > 1 \text{ to } < 4$	
Distinct 1	D	or	$\Delta v > 2 \text{ to } < 4$	and	∆c < 4	
		Δh = 1;	Δv ≤1	and	$\Delta c > 1 \text{ to } < 3$	
		or	$\Delta v > 1 \text{ to } < 3$	and	∆c < 3	
		Δh = 2;	$\Delta v = 0$	and	$\Delta c > 0 \text{ to } < 2$	
		or	$\Delta v > 0$ to < 2	and	∆c < 2	
		$\Delta h = 0;$	<u>Δ ≥ 4</u>	or	$\Delta c \ge 4$	
Prominent 1	Р	Δh = 1;	<u>Δ ≥ 3</u>	or	$\Delta c \ge 3$	
		$\Delta h = 2$;	<u>Δ≥2</u>	_ or _	$\Delta c \ge 2$	
		$\Delta h \geq 3$;				

If compared colors have both a Value ≤ 3 and a Chroma of ≤ 2, the contrast is Faint, regardless of Hue differences.

Tabular List for Determination of Color Contrast

Hues are the same ($\Delta h = 0$)¹

ı											
	Contrast	Faint	Distinct	Distinct	Prominent	Faint	Distinct	Distinct	Prominent	Faint	Distinct
	Δ Chroma	\frac{1}{2}	2	3	> 4	\ 1	2	3	> 4	VI	2
	∆ Value	0	0	0	0	1	_	_	1	≥ 2	< 2

Hues differ by 1 ($\Delta h = 1$)¹

Contrast	Faint	Distinct	Prominent	Faint	Distinct	Prominent	Distinct	Distinct	Prominent	Prominent
∆ Chroma	\f	2	۱۷ ع	^I	2	٧3	, vi	2	≥ 3	I
∆ Value	0	0	0	_	_	_	2	2	2	≥ 3

Hues differ by 2 ($\Delta h = 2$)¹

Contrast	Faint	Distinct	Prominent	Distinct	Prominent	Prominent
∆ Value	0	1	≥ 2	, vi	≥ 2	I
∆ Value	0	0	0	_	_	> 2

Hues differ by 3 or more ($\Delta h \ge 3$)¹

Contrast	Prominent		
Δ Value $\mid \Delta$ Chroma	trast is	Prominent, except for	low Chroma and Value ¹
∆ Value	Color contrast is	Prominen	low Chron

Prominent

۷ 4

Distinct

s s

Distinct Distinct

~|~

က

Exception: If both colors have a Value ≤ 3 and a Chroma ≤ 2 , the Color Contrast is *Faint*, regardless of Hue differences.

Prominent Prominent

۷۱ 4

> ۷۱ 4

Mottles - Color - Use standard Munsell® notation of hue, value, chroma; e.g., 5 YR 4/4 (for reddish brown).

Mottles - Moisture State - Record the moisture condition of the mottle (not to be confused with soil water state); e.g., *moist*.

Code
D
M

Mottles - Shape (optional) - Use "Concentrations - Shape" table; e.g., *irregular*.

NOTE: In PDP, **Location** (use "Concentrations - Location" table), and **Hardness** (use "Rupture Resistance —Blocks, Peds, and Clods—Cementation" column) can be described **(optional)**.

REDOXIMORPHIC FEATURES - RMF (DISCUSSION)

Redoximorphic Features (RMF) are a color pattern in a soil due to loss (depletion) or gain (concentration) of pigment compared to the matrix color, formed by oxidation/ reduction of Fe and/or Mn coupled with their removal, translocation, or accrual; or a soil matrix color controlled by the presence of Fe⁺². The composition and process of formation for a soil color or color pattern must be known or inferred before describing it as a RMF. Because of this inference, RMF are described separately from other mottles, concentrations; e.g., salts; or compositional features; e.g., clay films. RMF generally occur in one or more of these settings:

- a. In the soil matrix, unrelated to surfaces of peds or pores.
- b. On or beneath the surfaces of peds.
- c. As filled pores, linings of pores, or beneath the surfaces of pores.

RMFs include the following:

- Redox Concentrations Localized zones of enhanced pigmentation due to an accrual of, or a phase change in, the Fe-Mn minerals; or are physical accumulations of Fe-Mn minerals. NOTE: Iron concentrations may be either Fe⁺³ or Fe⁺². Types of redox concentrations are:
 - a. **Masses** Noncemented bodies of enhanced pigmentation that have a redder or blacker color than the adjacent matrix.
 - b. Nodules or Concretions Cemented bodies of Fe-Mn oxides.
- 2. Redox Depletions Localized zones of "decreased" pigmentation that are grayer, lighter, or less red than the adjacent matrix. Redox depletions include, but are not limited to, what were previously called "low chroma mottles" (chroma ≤ 2). Depletions with chroma ≤ 2 are used to define aquic conditions in Soil Taxonomy and are used extensively in the field to infer occurrence and depth of saturation in soils. Types of redox depletions are:
 - a. Iron Depletions Localized zones that have one or more of the following: a yellower, greener, or bluer hue; a higher value; or a lower chroma than the matrix color. Color value is normally ≥ 4. Loss of pigmentation results from the loss of Fe and/or Mn. Clay content equals that in the matrix.
 - b. Clay Depletions Localized zones that have either a yellower, greener, or bluer hue, a higher value, or a lower chroma than the matrix color. Color value is normally ≥ 4. Loss of pigmentation results from a loss of Fe and/or Mn and clay. Silt coats or skeletans commonly form as depletions but can be non-redox concentrations, if deposited as flow material in pores or along faces of peds.
- Reduced Matrix A soil horizon that has an in situ matrix chroma ≤ 2 due to the presence of Fe⁺². Color of a sample becomes redder or brighter (oxidizes) when exposed to air. The color change usually occurs within 30 minutes. A 0.2% solution of α, α'- dipyridyl dissolved in 1N ammonium acetate (NH₄OAc) pH 7 can verify the presence of Fe⁺² in the field (Childs, 1981).

NOTE: Use of RMF alters the traditional sequence for describing soil color (see the "Decision Flowchart for Describing Colors for Soil Matrix and Soil Features"). RMF are described separately from other color variations or concentrations. Mottles (color variations <u>not</u> due to loss or accrual of Fe-Mn oxides; e.g., variegated weathered rock) are still described under **Soil Color**. A Reduced Matrix is recorded as a RMF and as "reduced" in **Soil Color** - **Location** or **Condition Described**.

REDOXIMORPHIC FEATURES

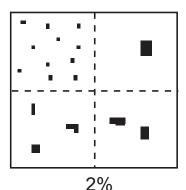
Record Kind, Quantity (percent of area covered), Size, Contrast, Color, Moisture State, Shape, Location, Hardness, and Boundary. A complete example is: common, medium, prominent, black Iron-Manganese nodules, moist, spherical, In the matrix, weakly cemented, sharp or c, 2, p, 5 YR 2.5/1, FMM, M, S, MAT, w, s. At present, relict RMF's, as supported by geomorphic setting, water table data, etc., are recorded as "relict RMF's" (include horizons and depths) under Miscellaneous Field Notes.

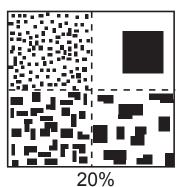
REDOXIMORPHIC FEATURES - KIND -

Kind	Code		Kind	C	ode		
	PDP	NASIS		PDP	NASIS		
REDUCED MATRIX	(chron	na ≤ 2 pr	imarily from Fe ⁺²)				
reduced matrix	_	RMX					
REDOX DEPLETIO	NS (los	s of pign	ment or material)				
clay depletions	A3	CLD	iron depletions	F5	FED		
REDOX CONCENT	REDOX CONCENTRATIONS (accumulated pigment, material)						
,	Masses ¹ (noncemented)						
iron (Fe ⁺³) 3, 4, 5	F2	F3M	iron-manganese 3, 4, 5	M2	FMM		
iron (Fe ⁺²) ²	_	F2M	manganese 4, 5	M8	MNM		
Nodules 1 (cement	ed; no l	layers, c	rystals not visible at 10X)				
ironstone	F4	FSN	iron-manganese 4	M5	FMN		
plinthite	F1	PLN					
Concretions 1 (cer	nented;	distinct	layers, crystals not visible	;)			
iron-manganese ⁴					FMC		
Surface Coats / Fil	Surface Coats / Films or Hypocoats						
manganese (mangans: black, very thin, exterior films)					MNF		
ferriargillans (Fe ⁺³ s	stained o	clay film)		I 6	FEF		

¹ See discussion under **Concentrations** for definitions.

² A concentration of reduced iron Fe⁺²; e.g., *FeS*.


- ³ A concentration of oxidized iron Fe⁺³; e.g., hematite, (formerly described as reddish mottles).
- Iron and Mn commonly occur in combination and field identification of distinct phases is difficult. Use Mn masses only for those that are at least Slightly Effervescent with H₂O₂. Describe nodules and concretions as Iron-Manganese unless colors are unambiguous.
- ⁵ Suggested, color guidelines for field description of Fe vs. Mn Masses:


Color of C	oncentration	Dominant Composition
Value	Chroma	
≤ 2	≤ 2	Mn
> 2 and ≤ 4	> 2 and ≤ 4	Fe and Mn
> 4	> 4	Fe

⁶ In PDP, these features (codes) were recorded under **Coat - Kind**.

REDOXIMORPHIC FEATURES - QUANTITY (Percent of Area Covered) -

Class	Code		Criteria: Percent of
	Conv.	NASIS	Surface Area Covered
Few	f	#	< 2
Common	С	#	2 to < 20
Many	m	#	≥ 20

REDOXIMORPHIC FEATURES - SIZE - See size class graphic under either Mottles or Concentrations.

Size Class	Code	Criteria
Fine	1	< 2 mm
Medium	2	2 to < 5 mm
Coarse	3	5 to < 20 mm
Very Coarse	4	20 to < 76 mm
Extremely Coarse	5	≥ 76 mm

REDOXIMORPHIC FEATURES - CONTRAST - Use "Mottle - Contrast Table" or "Mottle - Contrasts Chart;" e.g., *Prominent* or *p*.

REDOXIMORPHIC FEATURES - COLOR - Use standard Munsell® notation from the "Soil Color Section;" e.g., *light brownish gray* or 2.5Y 6/2.

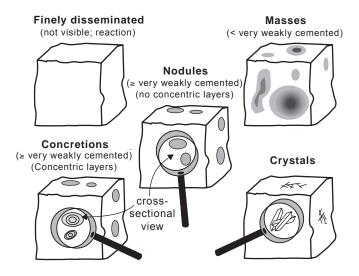
REDOXIMORPHIC FEATURES - MOISTURE STATE - Describe the moisture condition of the Redoximorphic Feature (use "Soil Color - Moisture State Table"); e.g., *Moist (M)* or *Dry (D)*.

REDOXIMORPHIC FEATURES - SHAPE - Describe the shape of the redoximorphic feature (use "Concentrations - Shape Table"); e.g., *Spherical (S)*.

REDOXIMORPHIC FEATURES - LOCATION - Describe the location(s) of the Redoximorphic Feature within the horizon (use "Concentrations - Location Table"); e.g., In the matrix around depletions *(MAD)*.

REDOXIMORPHIC FEATURES - HARDNESS - Describe the relative force required to crush the Redoximorphic Feature (use the same classes and criteria as the "Rupture Resistance for Blocks / Peds / Clods-Cementation" column); e.g., *Strongly Cemented (ST)*.

REDOXIMORPHIC FEATURES - BOUNDARY - The gradation between the Redoximorphic Feature and the adjacent matrix (use "Concentrations - Boundary Table"); e.g., *Sharp (S)*.


CONCENTRATIONS (DISCUSSION)

Concentrations are soil features that form by accumulation of material during pedogenesis. Dominant processes involved are chemical dissolution/ precipitation; oxidation and reduction; and physical and/or biological removal, transport, and accrual. Types of concentrations (modified from Soil Survey Staff, 1993) include the following:

- Finely Disseminated Materials are physically small precipitates (e.g., salts, carbonates) dispersed throughout the matrix of a horizon. The materials cannot be readily seen (10X lens), but can be detected by a chemical reaction (e.g., effervescence of CaCO₃ by HCI) or other proxy indicators.
- Masses are noncemented ("Rupture Resistance-Cementation Class" of
 Extremely Weakly Cemented or less) bodies of accumulation of various
 shapes that cannot be removed as discrete units, and do not have a
 crystal structure that is readily discernible in the field (10X hand lens).
 This includes finely crystalline salts and Redox Concentrations that do not
 qualify as nodules or concretions.
- Nodules are cemented (Very Weakly Cemented or greater) bodies of various shapes (commonly spherical or tubular) that can be removed as discrete units from soil. Crystal structure is not discernible with a 10X hand lens.
- 4. Concretions are cemented bodies (Very Weakly Cemented or greater) similar to nodules, except for the presence of visible, concentric layers of material around a point, line, or plane. The terms "nodule" and "concretion" are not interchangeable.
- Crystals are macro-crystalline forms of relatively soluble salts (e.g., halite, gypsum, carbonates) that form in situ by precipitation from soil solution. The crystalline shape and structure is readily discernible in the field with a 10X hand lens.
- Biological Concentrations are discrete bodies accumulated by a biological process (e.g., fecal pellets), or pseudomorphs of biota or biological processes (e.g., insect casts) formed or deposited in soil.
- 7. Inherited Minerals are field-observable particles (e.g. mica flakes) or aggregates (e.g. glauconite pellets) that impart distinctive soil characteristics and formed by geologic processes in the original Parent Material and subsequently inherited by the soil rather than formed or concentrated by pedogenic processes. Included here due to historical conventions; not all Concentrations descriptors may apply (e.g. shape, color).

General conventions for documenting various types of **Concentrations**:

Type of Distribution	Documentation	Examples
Finely Disseminated (discrete bodies not visible)	Horizon Suffix, Concentrations	Carbonates (none) Salts (Bz, Bn)
Masses, Nodules, Concretions, Crystals, Biological Features	Redoximorphic Features, or Concentrations	Mn nodules Fe concretions Insect casts
Continuous Cementation	Terms in Lieu of Texture	Duripan Petrocalcic

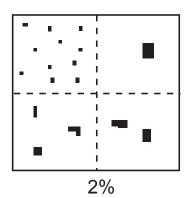
CONCENTRATIONS

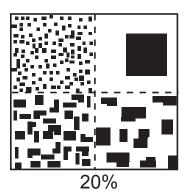
Record Kind, Quantity (percent of area covered), Size, Contrast, Color, Moisture State, Shape, Location, Hardness, and Boundary. A complete example is: many, fine, prominent, white, moist, cylindrical, carbonate nodules in the matrix, moderately cemented, clear or m, 1, p, 10YR 8/1, M, c, CAN, MAT, M, c.

CONCENTRATIONS - KIND - Identify the composition and the physical state of the concentration in the soil. *NOTE*: Table sub-headings (e.g., *Masses*) are a guide to various physical states of materials. Materials with similar or identical chemical compositions may occur in multiple physical states (under several sub-headings); e.g., *salt masses* and *salt crystals*.

CONCENTRATIONS (NON-REDOX) (accumulations of material)						
Kind	Co	de	Kind	Code		
	PDP	NASIS		PDP	NASIS	
FINELY DISSEMIN	IATED	(bodies	not visible by unaided ey	/e; prop	osed)	
Finely Dissem.	_	FDC	Finely Disseminated	_	FDS	
carbonates			salts			
MASSES (noncen	nented	crystal	s not visible with 10X har	nd lens)		
barite (BaSO ₄)	B2	BAM	gypsum (CaSO ₄ · 2H ₂ O)	G2	GYM	
carbonates	K2	CAM	salt	H2	SAM	
(Ca, Mg, NaCO ₃)			(NaCl, Na-Mg sulfates)			
clay bodies	A2	CBM	silica	S2	SIM	
gypsum (nests)	G3	GNM				
NODULES (ceme	nted; r	on-crys	talline at 10X, no layers)			
carbonates 1	C4	CAN	gibbsite (Al ₂ O ₃)	E4	GBN	
durinodes (SiO ₂)	S4	DNN	opal	S1	OPN	
CONCRETIONS (cemen	ted; non	-crystalline at 10X, distin	ct layer	rs)	
carbonates 1	C3	CAC	silica	S3	SIC	
gibbsite	E3	GBC	titanium oxide	-	TIC	
CRYSTALS (crys	tals vis	ible wit	h 10X hand lens)			
barite (BaSO ₄)	B1	BAX	gypsum (CaSO ₄ · 2H ₂ 0)	G1	GYX	
calcite (CaCO ₃)	C1	CAX	salt	H1	SAX	
			(NaCl, Na-Mg sulfates)			
	NCEN	TRATION	IS (byproducts or pseudo	omorph	s)	
diatoms ²	_	DIB	root sheaths	_	RSB	
fecal pellets	_	FPB	shell fragments	_	SFB	
			(terrestrial or aquatic)			
insect casts 3	T 3	ICB	sponge spicules ²	_	SSB	
(e.g. Cicada mold)						
plant phytoliths ²	_	PPB	worm casts ³	T 2	WCB	
(plant opal)						
INHERITED MINE	RALS					
glauconite	-	GLI	mica flakes	-	MIC	
pellets						

¹ For example: *loess doll (aka loess kindchen, loess puppies*, etc.).

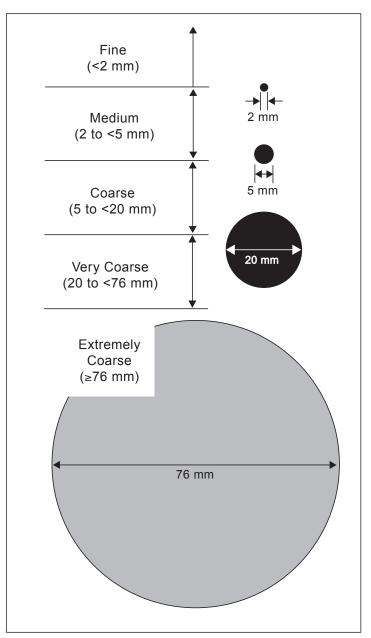

² Commonly requires magnification > 10X to be observed.


Worm casts are ovoid, fecal pellets excreted by earthworms. Insect casts are cemented (e.g., CaCO₃) molds of insect bodies or burrows.

⁴ Minerals inherited from parent material rather than formed in soil.

CONCENTRATIONS - QUANTITY (PERCENT OF AREA COVERED) -

Class	Code		Criteria: % of	
	Conv. NASIS		Surface Area Covered	
Few	f	#	< 2	
Common	c # 2 to <20		2 to <20	
Many	m	#	≥20	

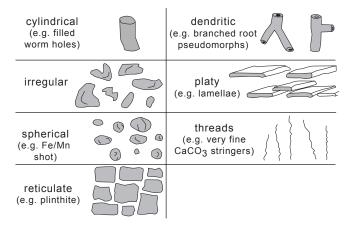

CONCENTRATIONS - SIZE - (Same as "RMF's" and "Mottle Size Classes". See graphic on next page.)

Size Class	Code	Criteria
Fine	1	< 2 mm
Medium	2	2 to < 5 mm
Coarse	3	5 to < 20 mm
Very Coarse	4	20 to < 76 mm
Extremely Coarse	5	≥ 76 mm

CONCENTRATIONS - CONTRAST - (Use "Mottle - Contrast Table" or "Mottle - Contrast Chart;" e.g., *distinct*.

CONCENTRATIONS - COLOR - Use standard Munsell® notation; e.g., 7.5 YR 8/1.

CONCENTRATIONS - MOISTURE STATE - Use "Soil Color - Moisture State Table;" i.e., *Moist (M)* or *Dry (D)*.



CONCENTRATIONS - SHAPE (also used for Mottles, Redoximorphic Features)

Shape	Code		Criteria
	PDP	NASIS	
cylindrical	С	С	tubular and elongated bodies; e.g., filled wormholes and insect burrows
dendritic	D	D	tubular, elongated, branched bodies; e.g., pipestems (root pseudomorphs)
irregular	Z	I	bodies of non-repeating spacing or shape
platy	Р	Р	relatively thin, tabular sheets, lenses; e.g., lamellae
reticulate	_	R	crudely interlocking bodies with similar spacing e.g., plinthite
spherical ¹	0	S	well-rounded to crudely spherical bodies; e.g., Fe / Mn "shot"
threads	T	T	thin (e.g., < 1 mm diam.) elongated filaments; generally not dendritic; e.g., very fine $CaCO_3$ stringers

Called Rounded in PDP.

Examples of Mottles, Concentrations, and RMF Shapes

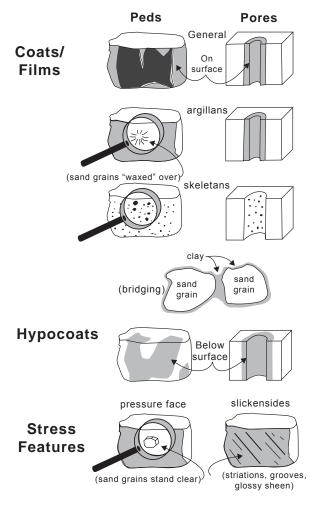
CONCENTRATIONS - LOCATION - Describe the location(s) of the concentration (or depletion for RMF's) within the horizon. Historically called **Concentrations - Distribution**.

Location	Co	de
	PDP	NASIS
MATRIX (in soil matrix; not associated with ped faces or	pores)	
In the matrix (not associated with peds/pores)	_	MAT
In matrix around depletions	_	MAD
In matrix around concentrations	_	MAC
Throughout (e.g., finely disseminated carbonates)	Т	TOT
PEDS (on or associated with faces of peds)		
Between peds	Р	BPF
Infused into the matrix along faces of peds (hypocoats) 1	_	MPF
On faces of peds (all orientations)	_	APF
On horizontal faces of peds	_	HPF
On vertical faces of peds	-	VPF
PORES (in pores, or associated with surfaces along pore	es)	
On surfaces along pores	_	SPO
On surfaces along root channels (proposed)	-	RPO
Infused into the matrix adjacent to pores (hypocoats) 1	_	MPO
Lining pores (see graphic p. 2-26)	_	LPO
OTHER		
In cracks	С	CRK
At top of horizon	М	TOH
Around rock fragments	S	ARF
On bottom of rock fragments (e.g., pendants)	_	BRF
On slickensides	_	SSS
Along lamina or strata surfaces (proposed)	_	ALS

CONCENTRATIONS - HARDNESS - Describe the relative force required to crush the concentration body (use the same criteria and classes as the "Rupture Resistance for Blocks, Peds, and Clods — Cementation" column; e.g., *Moderately Cemented* (exclude the *Non-Cemented* class). *NOTE*: PDP doesn't recognize the *Moderately Hard* class, dry nor moist (= *Very Weakly Cemented*).

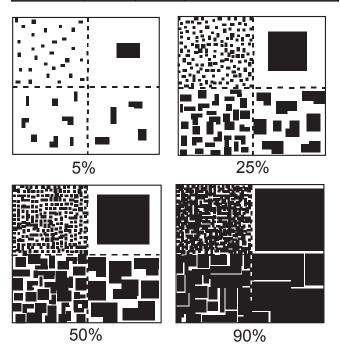
CONCENTRATIONS - BOUNDARY - The gradation between feature and matrix.

Class	Code	Criteria	
Sharp	S	Color changes in < 0.1 mm; change is abrupt even under a 10X hand lens.	
Clear	С	Color changes within 0.1 to < 2 mm; gradation is visible without 10X lens.	
Diffuse	D	Color changes in ≥ 2 mm; gradation is easily visible without 10X hand lens.	


PED and VOID SURFACE FEATURES

These features are coats/films, hypocoats, or stress features formed by translocation and deposition, or shrink-swell processes on or along surfaces. Describe **Kind**, **Amount Class** (percent in NASIS and PDP), **Distinctness**, **Location**, and **Color** (dry or moist). An example is: *many*, *faint*, *brown 10YR 4/6* (*Moist*), *clay films on all faces of peds or m, f, 10YR 4/6* (*M*), *CLF*, *PF*.

PED and VOID SURFACE FEATURES - KIND (non-redoximorphic)


Kind	Code		Field Criteria		
	PDP	NASIS			
COATS, FILMS (exterior, adhered to surface)					
carbonate coats	K	CAF	off-white, effervescent with HCl		
silica (silans, opal)	_	SIF	off-white, noneffervesent with HCI		
clay films (argillans)	Т	CLF	waxy, exterior coats		
clay bridging	D	BRF	"wax" between sand grains		
ferriargillans described as RMF - Kind		see RMFs	Fe ⁺³ stained clay film		
gibbsite coats (sesquan)	G	GBF	AIOH ₃ , off-white, noneffervescent with HCl		
manganese (mangans) described as RMF - Kind		see RMFs	black, thin films effervescent with H_2O_2		
organic stains	_	OSF	dark organic films		
organoargillans	0	OAF	dark, organic stained clay films		
sand coats	Z	SNF	separate grains visible with 10X		
silt coats 1	R	SLF	separate grains not visible at 10X		
skeletans ² (sand or silt)	S	SKF	clean sand or silt grains as coats		
skeletans on argillans	Α	SAF	clean sand or silt over clay coats		
HYPOCOATS 3 (A stain i	nfuse	d beneat	th a surface)		
STRESS FEATURES (ext	erior	face)			
pressure faces (i.e. stress cutans)	Р	PRF	look like clay films; sand grains uncoated		
slickensides (pedogenic)	K	SS	shrink-swell shear features (e.g. grooves, striations, glossy surface) on pedo-structure surfaces; (e.g. wedges, bowls);		
slickensides (geogenic)	_	SSG	vertical / oblique, roughly planar shear face from external stress (e.g. faults; mass movement); striations, grooves		

- Individual silt grains are not discernible with a 10X lens. Silt coats occur as a fine, off-white, noneffervescent, "grainy" coat on surfaces.
- ² Skeletans are (pigment) stripped grains > 2 μm and < 2 mm (Brewer, 1976). Preferably describe either *silt coats* (grains not discernible with 10X lens), or *sand coats* (grains discernible with 10X lens).
- 3 Hypocoats, as used here, are field-scale features commonly expressed only as Redoximorphic Features. Micromorphological hypocoats include nonredox features (Bullock, et al., 1985).

PED and VOID SURFACE FEATURES - AMOUNT - Estimate the relative percent of the visible surface area that a ped-surface feature occupies in a horizon. (See graphic below). In PDP & NASIS, record the estimate as a numeric percent; e.g., 20%.

Amount	Code		Criteria:
Class	Conv. NASIS		percent of surface area
Very Few	vf	%	< 5 percent
Few	f	%	5 to < 25 percent
Common	С	%	25 to < 50 percent
Many	m	%	50 to < 90 percent
Very Many	vm	%	≥ 90 percent

PED and VOID SURFACE FEATURES - CONTINUITY (Obsolete in NRCS) - Replaced by **Ped and Void Surface Feature - Amount** in PDP.

Continuity Class Code (Conv.)		Criteria: Features Occur As	
Continuous	С	Entire Surface Cover	
Discontinuous	D	Partial Surface Cover	
Patchy	P	Isolated Surface Cover	

PED and VOID SURFACE FEATURES - DISTINCTNESS - The relative extent to which a ped surface feature visually stands out from adjacent material.

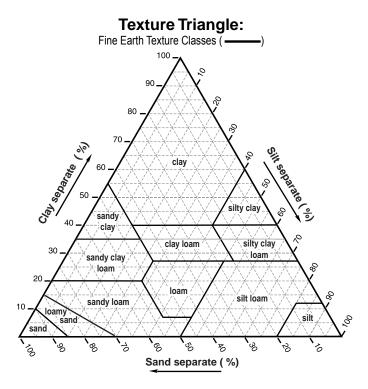
Distinctness Class	Code	Criteria:
Faint	F	Visible with magnification only (10X hand lens); little contrast between materials.
Distinct	D	Visible without magnification; significant contrast between materials.
Prominent	Р	Markedly visible without magnification; sharp visual contrast between materials.

PED and VOID SURFACE FEATURES - LOCATION - Specify where ped- surface features occur within a horizon; e.g., *Between sand grains*.

Location	Cod	е
	PDP	NASIS
PEDS		
On bottom faces of peds	L 1	BF
On top faces of peds	U 1	TF
On vertical faces of peds	V	VF
On all faces of peds (vertical & horizontal)	Р	PF
On tops of soil columns	С	TC
OTHER (NON-PED)		
Between sand grains (bridging)	В	BG
On surfaces along pores	I 1	SP
On surfaces along root channels	I 1	SC
On concretions	0	CC
On nodules	N	NO
On rock fragments	R	RF
On top surfaces of rock fragments	U ¹	TR
On bottom surfaces of rock fragments	L 1	BR
On slickensides	_	SS

¹ Codes are repeated because these choices are combined in PDP.

PED and VOID SURFACE FEATURES - COLOR - Use standard Munsell® notation (hue, value, chroma) to record feature color. Indicate whether the color is Moist (M) or Dry (D).


(SOIL) TEXTURE

This is the numerical proportion (percent by weight) of sand, silt, and clay in a soil. Sand, silt, and clay content is estimated in the field by hand (or quantitatively measured in the office/lab by hydrometer or pipette) and then placed within the texture triangle to determine **Texture Class**. Estimate the **Texture Class**; e.g., *sandy loam*; or **Subclass**; e.g., *fine sandy loam* of the fine earth (≤ 2 mm) fraction, or choose a **Term in Lieu of Texture**; e.g., *gravel*. If appropriate, use a **Textural Class Modifier**; e.g., *gravelly silt loam*.

NOTE: Soil Texture encompasses only the fine earth fraction (≤ 2 mm). Particle Size Distribution (PSD) encompasses the whole soil, including both the fine earth fraction (≤ 2 mm; weight %) and rock fragments (> 2 mm; volume %).

TEXTURE CLASS

	Co	de
Texture Class or Subclass	Conv.	NASIS
Coarse Sand	cos	COS
Sand	S	S
Fine Sand	fs	FS
Very Fine Sand	vfs	VFS
Loamy Coarse Sand	Icos	LCOS
Loamy Sand	ls	LS
Loamy Fine Sand	lfs	LFS
Loamy Very Fine Sand	lvfs	LVFS
Coarse Sandy Loam	cosl	COSL
Sandy Loam	sl	SL
Fine Sandy Loam	fsl	FSL
Very Fine Sandy Loam	vfsl	VFSL
Loam	I	L
Silt Loam	sil	SIL
Silt	si	SI
Sandy Clay Loam	scl	SCL
Clay Loam	cl	CL
Silty Clay Loam	sicl	SICL
Sandy Clay	SC	SC
Silty Clay	sic	SIC
Clay	С	С

TEXTURE MODIFIERS - Conventions for using "Rock Fragment Texture Modifiers" and for using textural adjectives that convey the "% volume" ranges for **Rock Fragments** - **Size and Quantity**.

Fragment Content % By Volume	Rock Fragment Modifier Usage
< 15	No texture adjective is used (noun only; e.g., loam).
15 to < 35	Use adjective for appropriate size; e.g., gravelly.
35 to < 60	Use "very" with the appropriate size adjective; e.g., very gravelly.
60 to < 90	Use "extremely" with the appropriate size adjective; e.g., extremely gravelly.
≥ 90	No adjective or modifier. If \leq 10% fine earth, use the appropriate noun for the dominant size class; e.g., gravel. Use Terms in Lieu of Texture .

TEXTURE MODIFIERS - (adjectives)

ROCK	Code		Criteria: Percent (By Volume)				
FRAGMENTS:		PDP/	of Total Rock Fragments and				
Size & Quantity 1	Conv.	NASIS	Dominated By (name size): 1				
ROCK FRAGMENTS (> 2 mm; ≥ Strongly Cemented)							
Gravelly	GR	GR	≥ 15% but < 35% gravel				
Fine Gravelly	FGR	GRF	≥15% but < 35% fine gravel				
Medium Gravelly	MGR	GRM	≥15% but < 35% med. gravel				
Coarse Gravelly	CGR	GRC	≥ 15% but < 35% coarse gravel				
Very Gravelly	VGR	GRV	≥ 35% but < 60% gravel				
Extremely Gravelly	XGR	GRX	≥ 60% but < 90% gravel				
Cobbly	СВ	СВ	≥ 15% but < 35% cobbles				
Very Cobbly	VCB	CBV	≥ 35% but < 60% cobbles				
Extremely Cobbly	XCB	CBX	≥ 60% but < 90% cobbles				
Stony	ST	ST	≥ 15% but < 35% stones				
Very Stony	VST	STV	≥ 35% but < 60% stones				
Extremely Stony	XST	STX	≥ 60% but < 90% stones				
Bouldery	BY	BY	≥ 15% but < 35% boulders				
Very Bouldery	VBY	BYV	≥ 35% but < 60% boulders				
Extremely Bouldery	XBY	BYX	≥ 60% but < 90% boulders				
Channery	CN	CN	≥ 15% but < 35% channers				
Very Channery	VCN	CNV	≥ 35% but < 60% channers				
Extremely Channery	XCN	CNX	≥ 60% but < 90% channers				
Flaggy	FL	FL	≥ 15% but < 35% flagstones				
Very Flaggy	VFL	FLV	≥ 35% but < 60% flagstones				
Extremely Flaggy	XFL	FLX	≥ 60% but < 90% flagstones				
PARAROCK FRAGI	MENTS (>	> 2 mm; <	Strongly Cemented) ^{2, 3}				
Parabouldery	PBY	PBY	(same criteria as bouldery)				
Very Parabouldery	VPBY	PBYV	(same criteria as very bouldery)				
Extr. Parabouldery	XPBY	PBYX	(same criteria as ext. bouldery)				
etc.	etc.	etc.	(same criteria as non-para)				

The "Quantity" modifier (e.g., very) is based on the total rock fragment content. The "Size" modifier (e.g., cobbly) is independently based on the largest, dominant fragment size. For a mixture of sizes (e.g., gravel and stones), a smaller size—class is named only if its quantity (%) sufficiently exceeds that of a larger size—class. For field texture determination, a smaller size-class must exceed 2 times the quantity (vol. %) of a larger size class before it is named (e.g., 30% gravel and 14% stones = very gravelly, but 20% gravel and 14% stones = stony). For more explicit naming criteria see NSSH-Part 618, Exhibit 618.11(Soil Survey Staff, 2001b).

- Use "Para" prefix if the rock fragments are soft (i.e., meet criteria for "para"). [Rupture Resistance - Cementation Class is < Strongly Cemented, and do not slake (slake test: ≈3cm (1 inch) diam. block, air dried, then submerged in water for ≥ 1 hour; collapse / disaggregation = "slaking").]</p>
- ³ For "Para" codes, add "P" to "Size" and "Quantity" code terms. Precedes noun codes and follows quantity adjectives, e.g., paragravelly = PGR; very paragravelly = VPGR.

COMPOSITIONAL TEXTURE MODIFIERS ¹ - (adjectives)

Types	Code		Criteria:					
	PDP	NASIS						
VOLCANIC								
Ashy		ASHY	Neither hydrous nor medial and $\geq 30\%$ of the < 2 mm fraction is 0.02 to 2.00 mm in size of which $\geq 5\%$ is volcanic glass					
Hydrous	_	HYDR	Andic properties, and with field moist 15 bar water content ≥ 100% of the dry weight					
Medial		MEDL	Andic properties, and with field moist 15 bar water content ≥ 30% to < 100% of the dry weight, or ≥12% water content for air-dried samples					
ORGANIC SO	ORGANIC SOILS (Histosols, Histels, and histic epipdons)							
Grassy	_	GS	OM > 15% (vol.) grassy fibers					
Herbaceous	_	HB	OM > 15% (vol.) herbaceous fibers					
Mossy	_	MS	OM > 15% (vol.) moss fibers					
Mucky 2	MK	MK	Used with peat (i.e. "mucky peat" for hemic					
			materials — Soil Taxonomy). 2					
Woody	_	WD	OM ≥ 15% (vol.) wood pieces or fibers					
ORGANIC MA	TERIA	LS IN MI	NERAL SOILS					
Mucky 2	MK	MK	Mineral soil > 10% OM and < 17% fibers					
Peaty	PT	PT	Mineral soil > 10% OM and > 17% fibers					
LIMNIC MATE	RIALS							
Coprogenous	_	COP						
Diatomaceous	_	DIA						
Marly	_	MR						
OTHER								
Cemented	_	CEM						
Gypsiferous	_	GYP	≥ 15% (weight) gypsum					
Permanently Frozen	PF	PF	e.g., Permafrost					

Fragment

- Compositional Texture Modifiers can be used with the Soil Texture Name (e.g., gravelly ashy loam) or with Terms in Lieu of Texture (e.g. mossy peat). For definitions and usage of Compositional Texture Modifiers, see the National Soil Survey Handbook - Part 618.67 (Soil Survey Staff, 2001).
- Mucký can be used either with organic soils (e.g. mucky peat) or mineral soils (e.g., mucky sand) but its definition changes; Soil Taxonomy (Soil Survey Staff, 1999).

TERMS USED IN LIEU OF TEXTURE - (nouns)

Terms Used in Lieu	Code						
of Texture	PDP	NASIS					
SIZE (ROCK FRAGMENTS) ≥ Strongly Cemented							
Gravel	G	G					
Cobbles	СВ	СВ					
Stones	ST	ST					
Boulders	В	BY					
Channers	_	CN					
Flagstones	_	FL					
SIZE (PARAROCK FRAGMENTS) < Strongly Cemented							
Paragravel	_	PG					
Paracobbles	_	PCB					
Parastones	_	PST					
Paraboulders	_	PBY					
Parachanners	_	PCN					
Paraflagstones	_	PFL					
COMPOSITION							
Cemented / Consolidated:							
Bedrock	-	BR					
Unweathered Bedrock (unaltered)	UWB	_					
Weathered Bedrock (altered; e.g., some Cr horizons)	WB	<u> </u>					
Organics:							
Highly Decomposed Plant Material (Oa) 1	_	HPM					
Moderately Decomposed Plant Material (Oe) 1	_	MPM					
Slightly Decomposed Plant Material (Oi) 1	_	SPM					
Muck ² (≈Oa)	_	MUCK					
Mucky Peat ² (≈Oe)	_	MPT					
Peat ² (≈Oi)	1	PEAT					
Other:							
Ice (permanently frozen) 3, 4							
Material ⁵		MAT					
Water (permanent) 3, 4		W					

¹ Use only with organic soil layers of mineral soils.

² Use only with Histosols or histic epipedons.

³ Use only for layers found below the soil surface.

⁴ In NASIS, use "Permanently Frozen" Water to convey permanent, subsurface ice.

^{5 &}quot;Material" is only used in combination with Compositional Texture Modifiers (p. 2-32); e.g. woody material; medial material. In NASIS, "Cemented Material" denotes any cemented soil material (i.e. duripan, ortstein, petrocalcic, petroferric, petrogypsic).

Comparison of Particle Size Classes in Different Systems

	J				-			:			- 1 -		
		FINE	FINE EARTH	HL				ROC	KFR	ROCK FRAGMENTS	1 TS 150	380 6	600 mm
									channers	iers	flé	flagst. stones	boulders
1 4001	Clay 2	Silt			Sand	þι			Gravel	_	Cop-	0,000	7
USDA	fine co.	fine	.00	v.fi.	fi.	med. co.	. 8	fine m	medium	coarse	ples	21016	Poulders
millimeters:	2	.002 mm	. 02	.05 .1	.25	5.	2	mm 5	2	20	76 2	250 6	600 mm
O.S. Standard Sieve No. (opening):	ening):		30	300 3140	09	35 1	18 10	4	(3,	(3/4")	(3") (1	(10") (2	(25")
Inter-		‡!io			Sand			,				0,000	
national 4	Clay	<u> </u>		fine		coarse	0	GI ave	<u>e</u>			SPIIOS	
millimeters: U.S. Standard Sieve No. (opening):		.002 mm	.02		.20		12 0	2 mm	2 8	20 mm (3/4")			
5 10:5:01		10,10				Sand			Gra	Gravel	0014400		3
Oninea		ollt of Clay			fine	medium		.00	fine	coarse			poniders
millimeters: U.S. Standard Sieve No. <i>(opening)</i> :	ening):			200	•	42	2 mm 10	4.8 4	(3,	19 (3/4")	76 (3")	300 mm	
2 9	l	ä			S	Sand		Gravel		or Stones	Brok	en Rock (Broken Rock (angular),
AASHIO "	Clay	<u></u>			fine	coarse	l es	fine	med.	.00	or E	or Boulders (rounded)	rounded)
millimeters: U.S. Standard Sieve No.:	_	.005 mm		.074	·	42 40	2 mm 10	ε	9.5 (3/8")	25 (1")	75 mm (3")		
phi#: 12	10	9 2 8 6	5	4 3	2	1 0	-1	-2	-3 -4	- 2-	- 2- 9-	-8 -9 -10	.12
Modified Wentworth	◆√- clay	Silt	+	+	sand sand		†	+	pebbles	\$		←°°°°°°°•°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	ers√►
millimeters: U.S. Standard Sieve No.:		.002 .004 .008 .016 .031	6 .031	.062 .125 230 120	.5 .25 0 60	35 18		2 mm 10 5	8 16	32	64	256	4092 mm

References for Table Comparing Particle Size Systems

- Soil Survey Staff. 1995. Soil survey laboratory information manual. USDA, Natural Resources Conservation Service, Soil Survey Investigations Report No. 45, Version 1.0, National Soil Survey Center, Lincoln, NE. 305 p.
- Soil Survey Staff. 1995. Soil Survey Lab information manual. USDA-NRCS, Soil Survey Investigation Report #45, version 1.0, National Soil Survey Center, Lincoln, NE. Note: Mineralogy studies may subdivide clay into three size ranges: fine (< 0.08 μm), medium (0.08 0.2 μm), and coarse (0.2 2 μm); Jackson, 1969.</p>
- The Soil Survey Lab (Lincoln, NE) uses a no. 300 sieve (0.047 mm opening) for the USDA sand / silt measurement. A no. 270 sieve (0.053 mm opening) is more readily available and widely used.
- International Soil Science Society. 1951. In: Soil Survey Manual. Soil Survey Staff, USDA Soil Conservation Service, Agricultural Handbook No. 18, U.S. Gov. Print. Office, Washington, D.C. 214 p.
- ASTM. 1993. Standard classification of soils for engineering purposes (Unified Soil Classification System). ASTM designation D2487-92. *In:* Soil and rock; dimension stone; geosynthetics. Annual book of ASTM standards - Vol. 04 08.
- AASHTO. 1986a. Recommended practice for the classification of soils and soil-aggregate mixtures for highway construction purposes. AASHTO designation M145-82. *In*: Standard specifications for transportation materials and methods of sampling and testing; Part 1: Specifications (14th ed.). American Association of State Highway and Transportation Officials, Washington, D.C.
- AASHTO. 1986b. Standard definitions of terms relating to subgrade, soil-aggregate, and fill materials. AASHTO designation M146-70 (1980). *In:* Standard specifications for transportation materials and methods of sampling and testing; Part 1: Specifications (14th ed.). American Association of State Highway and Transportation Officials, Washington, D.C.
- Ingram, R.L. 1982. Modified Wentworth scale. In: Grain-size scales. AGI Data Sheet 29.1. In: Dutro, J.T., Dietrich, R.V., and Foose, R.M. 1989. AGI data sheets for geology in the field, laboratory, and office, 3rd edition. American Geological Institute, Washington, D.C.

ROCK and OTHER FRAGMENTS

These are discrete, water-stable particles > 2 mm. Hard fragments (e.g., rock, wood) have a Rupture Resistance - Cementation Class ≥ *Strongly Cemented*. Softer fragments (e.g., para rock) are less strongly cemented. Describe **Kind**, **Volume Percent** (classes given below), **Roundness or Shape**, and **Size** (mm).

ROCK and OTHER FRAGMENTS - KIND - (Called **FRAGMENTS** in NASIS) Use the choice list given for **Bedrock - Kind** and the additional choices in the table below. **NOTE**: Interbedded rocks from the "Bedrock - Kind Table" are not appropriate choices or terminology for rock fragments.

Kind	C	ode	Kind	(ode
	PDP	NASIS		PDP	NASIS
Includes all choices	in Bedr	ock - Kir	nd (except Interbed	<i>lded</i>), plu	s:
calcrete (caliche) 1	_	CA	metamorphic rocks ²	_	MMR
carbonate concretions	_	CAC	mixed rocks ³	_	MSR
carbonate nodules	_	CAN	ortstein fragments	_	ORF
carbonate rocks ²	_	CAR	petrocalcic fragments	_	PEF
charcoal	_	СН	petroferric fragments	_	TCF
cinders	E5	CI	petrogypsic fragments	_	PGF
durinodes	_	DNN	plinthite nodules	_	PLN
duripan fragments	_	DUF	quartz	_	QUA
foliated meta- morphic rocks ²	_	FMR	quartzite	_	QZT
gibbsite concretions	_	GBC	scoria	_	SCO
gibbsite nodules	_	GBN	sedimentary rocks ²	_	SED
igneous rocks ²	_	IGR	shell fragments	_	SHF
iron-manganese concretions	_	FMC	silica concretions	_	SIC
iron-manganese nodules	_	FMN	volcanic bombs	_	VB
ironstone nodules	_	FSN	volcanic rocks ²	_	VOL
lapilli	_	LA	wood	_	WO

- Fragments strongly cemented by carbonate; may include fragments derived from petrocalcic horizons.
- ² Generic rock names may be appropriate for identifying fragments (e.g. a cobble) but are too general and should <u>not</u> be used to name Bedrock-Kinds.
- Numerous, unspecified fragment lithologies are present, as in till or alluvium; not for use with residuum.


ROCK and OTHER FRAGMENTS - VOLUME PERCENT - Estimate the quantity on a volume percent basis. **NOTE**: For proper use of **Texture Modifiers**, refer to the "Percent Volume Table" found under **Texture**.

ROCK and OTHER FRAGMENTS - ROUNDNESS - Estimate the relative roundness of rock fragments; use the following classes. (Called **Fragment Roundness** in PDP.)

Roundness	С	ode	Criteria: visual estimate ¹
Class	PDP	NASIS	
Very Angular	_	VA	
Angular	1	AN	[Use Roundness
Subangular	2	SA	graphic on next page]
Subrounded	3	SR	
Rounded	4	RO	
Well Rounded	5	WR	

¹ The criteria consist of a visual estimation; use the following graphic.

Estimate the relative rounding of rock fragments. (Ideally, use the average roundness based on 50 or more fragments.) The conventional geologic and engineering approach is presented in the following graphic. *NOTE*: NRCS does <u>not</u> quantify **Sphericity**. It is included here for completeness and to show the range in **Fragment Roundness**.

¹ After Powers, 1953.

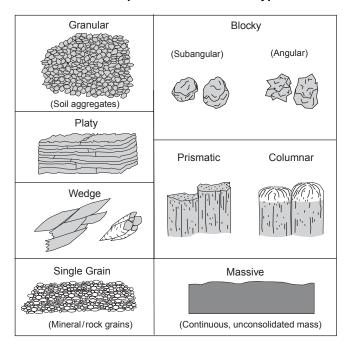
Numerical values below Roundness and Sphericity headings are class midpoints (median rho values) (Folk, 1955) used in statistical analysis.

ROCK and OTHER FRAGMENTS - SIZE CLASSES AND DESCRIPTIVE TERMS -

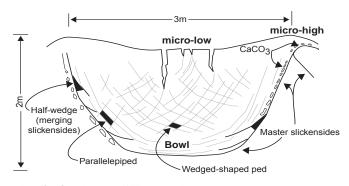
Size 1	Noun	Adjective ²
SHAPE - SPHERICAL or ((discoidal, subdiscoidal,		
> 2 - 75 mm diameter	gravel	gravelly
> 2 - 5 mm diameter	fine gravel	fine gravelly
> 5 - 20 mm diameter	medium gravel	medium gravelly
> 20 - 75 mm diameter	coarse gravel	coarse gravelly
> 75 - 250 mm diameter	cobbles	cobbly
> 250 - 600 mm diameter	stones	stony
> 600 mm diameter	boulders	bouldery
SHAPE - FLAT (prismoida	al or subprismoidal)	
> 2 - 150 mm long	channers	channery
> 150 - 380 mm long	flagstones	flaggy
> 380 - 600 mm long	stones	stony
> 600 mm long	boulders	bouldery

Fragment sizes measured by sieves; class limits have a > lower limit.
For a mixture of sizes (e.g., gravels and stones present), the largest size-class (most mechanically restrictive) is named. A smaller size-class is named only if its quantity (%) sufficiently exceeds that of a larger size class. For field texture determination, a smaller size-class must exceed 2 times the quantity (vol.%) of a larger size-class in order to be named (e.g., 30% gravel and 14% stones = very gravelly, but 20% gravel and 14% stones = stony). For more explicit naming criteria see NSSH-Part 618, Exhibit 618.11

(SOIL) STRUCTURE


(Soil) Structure is the naturally occurring arrangement of soil particles into aggregates that results from pedogenic processes. Record **Grade**, **Size**, and **Type**. For compound structure, list each **Size** and **Type**; e.g., *medium and coarse SBK parting to fine GR*. Lack of structure (structureless) has two end members: *massive* (MA) or *single grain* (SG). A complete example is: *weak*, *fine*, *subangular blocky* or 1, f, sbk.

(SOIL) STRUCTURE - TYPE (formerly Shape) -


Туре	С	ode	Criteria:
	Conv.	NASIS	(definition)
NATURAL S	SOIL ST	RUCTUR	AL UNITS (pedogenic structure)
Granular	gr	GR	Small polyhedrals, with curved or very irregular faces.
Angular Blocky	abk	ABK	Polyhedrals with faces that intersect at sharp angles (planes).
Subangular Blocky	sbk	SBK	Polyhedrals with sub-rounded and planar faces, lack sharp angles.
Platy	pl	PL	Flat and tabular-like units.
Wedge		WEG	Elliptical, interlocking lenses that terminate in acute angles, bounded by slickensides; not limited to vertic materials.
Prismatic	pr	PR	Vertically elongated units with flat tops.
Columnar	cpr	COL	Vertically elongated units with rounded tops which commonly are "bleached".
STRUCTUR	ELESS		
Single Grain	sg	SGR	No structural units; entirely noncoherent; e.g., loose sand.
Massive	m	MA	No structural units; material is a coherent mass (not necessarily cemented).
ARTIFICIAL (non-pedog		_	IENTS OR CLODS 1
Cloddy 1	_	CDY	Irregular blocks created by artificial distur bance; e.g., tillage or compaction.

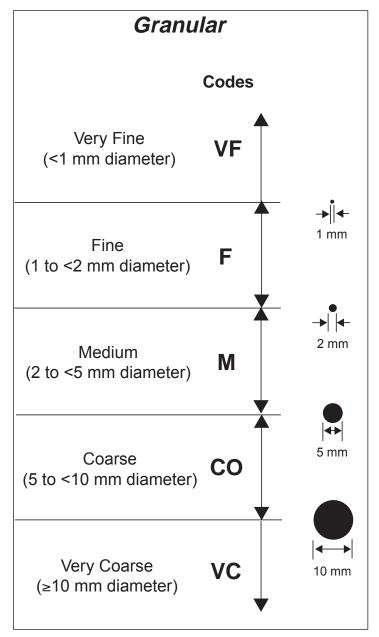
Used only to describe oversized, "artificial" earthy units that are not pedogenically derived soil structural units; e.g., the direct result of mechanical alteration; use **Blocky Structure Size** criteria.

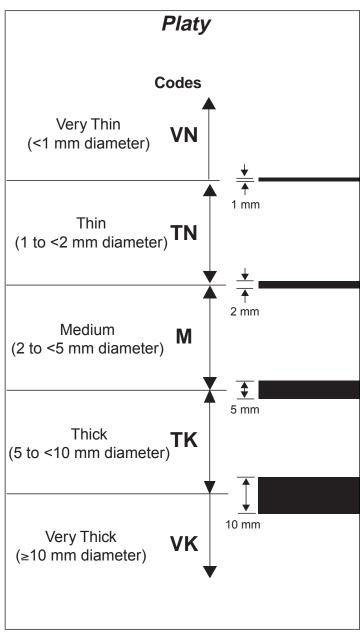
Examples of Soil Structure Types

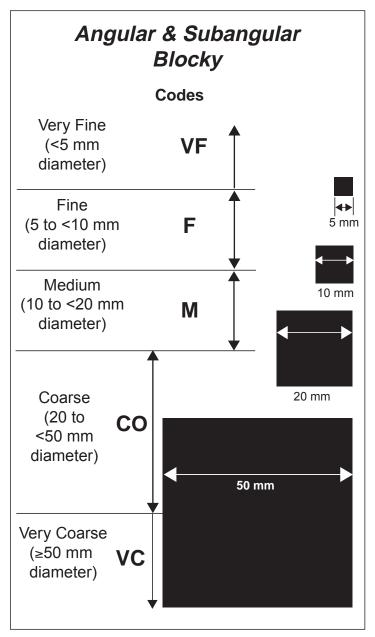
Example of Wedge Structure, Gilgai Microfeatures, & Microrelief

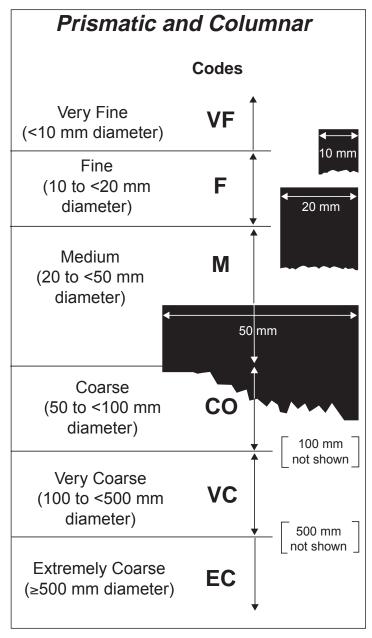
(modified from: Lynn and Williams, 1992)

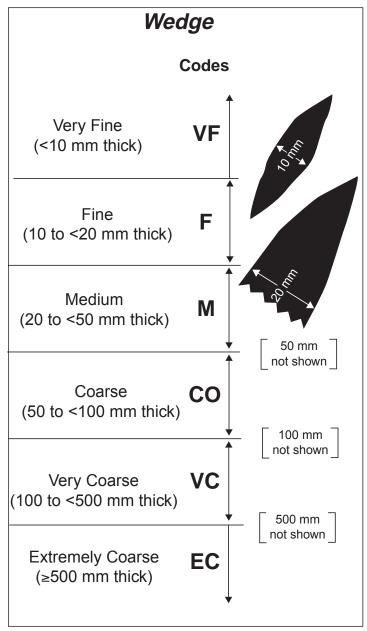
(SOIL) STRUCTURE - GRADE


Grade	Code	Criteria
Structureless	0	No discrete units observable in place or in hand sample.
Weak	1	Units are barely observable in place or in a hand sample.
Moderate	2	Units well-formed and evident in place or in a hand sample.
Strong	3	Units are distinct in place (undisturbed soil), and separate cleanly when disturbed.

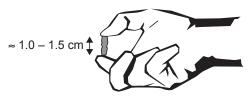

(SOIL) STRUCTURE - SIZE


Size Class	-	de NASIS	struct	Criteria: structural unit size ¹ (mm)	
			Granular Platy ² Thickness	Columnar, Prismatic, Wedge ³	Angular & Subangular Blocky
Very Fine (Very Thin) ²	vf (vn)	VF (VN)	< 1	< 10	< 5
Fine (Thin) ²	f (tn)	F (TN)	1 to < 2	10 to < 20	5 to < 10
Medium	m	М	2 to < 5	20 to < 50	10 to < 20
Coarse (Thick) ²	co (tk)	CO (TK)	5 to < 10	50 to < 100	20 to < 50
Very Coarse (Very Thick) ²	vc (vk)	VC (VK)	≥ 10	100 to < 500	≥ 50
Extr. Coarse	ес	EC	_	≥ 500	


Size limits always denote the <u>smallest</u> dimension of the structural units.
 For platy structure only, substitute *thin* for *fine* and *thick* for *coarse* in the size class names.


³ Wedge structure is generally associated with Vertisols (for which it is a requirement) or related soils with high amounts of smectitic clays.

CONSISTENCE


Consistence is the degree and kind of cohesion and adhesion that soil exhibits, and/or the resistance of soil to deformation or rupture under an applied stress. Soil-water state strongly influences consistence. Field evaluations of consistence include: Rupture Resistance (Blocks, Peds, and Clods; or Surface Crusts and Plates), Resistance to Penetration, Plasticity, Stickiness, and Manner of Failure. Historically, consistence applied to dry, moist, or wet soil as observed in the field. Wet consistence evaluated Stickiness and Plasticity. Rupture Resistance now applies to dry soils and to soils in a water state from moist through wet. Stickiness and Plasticity of soil are independent evaluations

RUPTURE RESISTANCE - A measure of the strength of soil to withstand an applied stress. Separate estimates of **Rupture Resistance** are made for **Blocks/Peds/Clods** and for **Surface Crusts and Plates** of soil. Block-shaped specimens should be approximately 2.8 cm across. If 2.8 cm cubes (e.g., ≈ 2.5 - 3.1 cm, or 1 inch) are not obtainable, use the following equation and the table below to calculate the stress at failure: [(2.8 cm / cube length cm)² X estimated stress (N) at failure)]; e.g., for a 5.6 cm cube [(2.8/5.6)² X 20 N] = 5 N \Rightarrow Soft Class. Plate-shaped specimens (surface crusts or platy structure) should be approximately 1.0 - 1.5 cm long by 0.5 cm thick (or the thickness of occurrence, if < 0.5 cm thick).

Crusts/Plates

RUPTURE RESISTANCE FOR:

Blocks, Peds, and Clods - Estimate the class by the force required to rupture (break) a soil unit. Select the column for the appropriate soil water state (*dry* vs. *moist*) and/or the *Cementation* column, if applicable.

Dry ¹ Class Code ³	Moist ¹ Class Code ³	Cementation ² Class Code ³	Specimen Fails Under
Loose L	Loose L m(lo)	[Not Applicable]	Intact specimen not obtainable
Soft S	Very VFR Friable m(vfr)	Non- NC Cemented	Very slight force between fingers. <8 N
Slightly SH Hard d(sh)	Friable FR m(fr)	Extremely EW Weakly Cemented	Slight force between fingers. 8 to < 20 N
Mod. MH Hard d(h)	Firm FI m(fi)	Very VW Weakly Cemented	Moderate force between fingers. 20 to < 40 N
Hard HA d(h)	Very VFI Firm m(vfi)	Weakly W Cemented c(w)	Strong force between fingers. 40 to < 80 N
Very VH Hard d(vh)	Extr. EF Firm m(efi)	Moderately M Cemented	Moderate force between hands. 80 to < 160 N
Extremely EH Hard d(eh)	Sli <i>ghtly</i> SR Rigid m(efi)	Strongly ST Cemented c(s)	Foot pressure by full body weight. 160 to < 800 N
Rigid R d(eh)	Rigid R m(efi)	Very VS Strongly Cemented	Blow of < 3 J but not body weight. 800 N to < 3 J
Very VR Rigid d(eh)	Very VR Rigid m(efi)	Indurated I c(I)	Blow of ≥ 3 J. (3 J = 2 kg weight dropped 15 cm).

¹ Dry Rupture Resistance column applies to soils that are moderately dry or drier (*Moderately Dry* and *Very Dry* **Soil Water State** sub-classes). Moist column applies to soils that are slightly dry or wetter (*Slightly Dry* through *Satiated* **Soil Water State** sub-classes; Soil Survey Staff, 1993; p. 91).

This is not a field test; specimen must first be air dried and then submerged in water for a minimum of 1 hour prior to test (Soil Survey Staff, 1993; p. 173).

³ Codes in parentheses (e.g., d(lo); Soil Survey Staff, 1951) are obsolete.

Soil Moisture Status (Consistence) (OBSOLETE) - Historical classes (Soil Survey Staff, 1951).

(d) ¹ Dry S		(m) ¹ Moist		Cementation	C
Class ²	Code	Class	Code	Class	Code
Loose	(d) lo	Loose	(m) lo	Weakly Cemented	(c) w
Soft	(d) so	Very Friable	(m) vfr		
Slightly Hard	(d) sh	Friable	(m) fr	Strongly Cemented	(c) s
Hard ²	(d) h	Firm	(m) fi		
Very Hard	(d) vh	Very Firm	(m) vfi	Indurated	(c) I
Extr. Hard	(d) eh	Extr. Firm	(m) efi		, ,

¹ Historically, consistence prefixes (*d* for dry, *m* for moist) were commonly omitted, leaving only the root code; e.g., *vfr* instead of *mvfr*.

Surface Crust and Plates

Class (air dried)	Code	Force ¹ (Newtons)
Extremely Weak	EW	Not Obtainable
Very Weak	VW	Removable, < 1N
Weak	W	1 to < 3N
Moderate	M	3 to < 8N
Moderately Strong	MS	8 to < 20N
Strong	S	20 to < 40N
Very Strong	VS	40 to < 80N
Extremely Strong	ES	≥ 80N

¹ For operational criteria [field estimates of force (N)] use the Fails Under column, in the "Rupture Resistance for Blocks, Peds, Clods" table.

CEMENTING AGENTS - Record kind of cementing agent, if present.

Kind	Code 1
carbonates	K
gypsum	G
humus	Н
iron	I
silica (SiO ₂)	S

Onventional codes traditionally consist of the entire material name or its chemical symbols; e.g., silica or SiO₂. Consequently, the Conv. code column would be redundant and is not shown in this table.

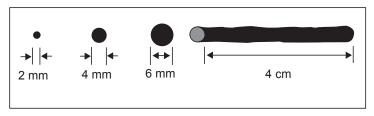
² Hard Class (Dry) was later split into Moderately Hard and Hard (Soil Survey Staff, 1993).

MANNER OF FAILURE - The rate of change and the physical condition soil attains when subjected to compression. Samples are moist or wetter.

Failure Class	Co	de	Criteria:
	PDP	NASIS	Related Field Operation
BRITTLENESS			Use a 3 cm block. (Press between thumb & forefinger.)
Brittle	В	BR	Ruptures abruptly ("pops" or shatters).
Semi-Deformable	SD	SD	Rupture occurs before compression to
			< 1/2 original thickness.
Deformable	D	DF	Rupture occurs after compression to ≥ 1/2 original thickness.
FLUIDITY			Use a palmful of soil. (Squeeze in hand.)
Nonfluid	NF	NF	No soil flows through fingers with full compression.
Slightly Fluid	SF	SF	Some soil flows through fingers, most remains in the palm, after full pressure.
Moderately Fluid	MF	MF	Most soil flows through fingers, some remains in palm, after full pressure.
Very Fluid	VF	VF	Most soil flows through fingers, very little remains in palm, after gentle pressure.
SMEARINESS			Use a 3 cm block. (Press between thumb & forefinger.)
Non-Smeary ¹	NS	NS	At failure, the sample does not change abruptly to fluid, fingers do not skid, no smearing occurs.
Weakly Smeary ¹	WS	WS	At failure, the sample changes abruptly to fluid, fingers skid, soil smears, little or no water remains on fingers.
Moderately Smeary ¹	MS	MS	At failure, the sample changes abruptly to fluid, fingers skid, soil smears, some water remains on fingers.
Strongly Smeary ¹	SM	SM	At failure, the sample abruptly changes to fluid, fingers skid, soil smears and is slippery, water easily seen on fingers.

Smeariness failure classes are used dominantly with Andic materials, but may also be used with some spodic materials.

STICKINESS - The capacity of soil to adhere to other objects. Stickiness is estimated at the moisture content that displays the greatest adherence when pressed between thumb and forefinger.


Stickiness	Code			Criteria: Work moistened soil	
Class	Conv	PDP	NASIS	between thumb and forefinger	
Non-Sticky	(w) so	SO	SO	Little or no soil adheres to fingers, after release of pressure.	
Slightly Sticky	(w) ss	SS	SS	Soil adheres to both fingers, after release of pressure. Soil stretches little on separation of fingers.	
Moderately Sticky ¹	(w) s	S	MS	Soil adheres to both fingers, after release of pressure. Soil stretches some on separation of fingers.	
Very Sticky	(w) vs	VS	VS	Soil adheres firmly to both fingers, after pressure release. Soil stretches greatly upon separation of fingers.	

¹ Historically, the *Moderately Sticky* class was simply called *Sticky*.

PLASTICITY - The degree to which "puddled" or reworked soil can be permanently deformed without rupturing. The evaluation is made by forming a roll (wire) of soil at a water content where the maximum plasticity is expressed.

Plasticity	Code			Criteria:
Class	Conv	PDP	NASIS	Make a roll of soil 4 cm long
Non-Plastic	(w) po	PO	PO	Will not form a 6 mm diameter roll, or if formed, can't support itself if held on end.
Slightly Plastic	(w) ps	SP	SP	6 mm diameter roll supports itself; 4 mm diameter roll does not.
Moderately Plastic ¹	(w) p	Р	MP	4 mm diameter roll supports itself, 2 mm diameter roll does not.
Very Plastic	(w) vp	VP	VP	2 mm diameter roll supports its weight.

¹ Historically, the *Moderately Plastic* class was simply called *Plastic*.

PENETRATION RESISTANCE - The ability of soil in a confined (field) state to resist penetration by a rigid object of specified size. A pocket penetrometer (Soil-Test Model CL-700) with a rod diameter of 6.4 mm (area 20.10 mm²) and insertion distance of 6.4 mm (note line on rod) is used for the determination. An average of five or more measurements should be used to obtain a value for penetration resistance. In PDP, record the **Penetration Resistance** value in megapascals (MPa), **Orientation** of the rod (vertical (V) or horizontal (H)), and **Water State** of the soil.

NOTE: The pocket penetrometer has a scale of 0.25 to 4.5 tons/ft² (tons/ft² \approx kg/cm²). The penetrometer does <u>not</u> directly measure penetration resistance. The penetrometer scale is correlated to, and gives a field estimate of <u>unconfined compressive strength</u> of soil as measured with a Tri-Axial Shear device. The table below converts the scale reading on the pocket penetrometer to penetration resistance in MPa. Penetrometer readings are dependent on the spring type used. Springs of varying strength are needed to span the range of penetration resistance found in soil.

Penetrometer Scale Reading	S	pring Type ^{1, 2}	2, 3	
tons/ft 2	Original	Lee	Jones 11	Jones 323
	MPa	MPa	MPa	MPa
0.25	0.32 L	0.06 VL	1.00 M	3.15 H
0.75	0.60	0.13 L	1.76	4.20
1.00	0.74	0.17	2.14 H	4.73
1.50	1.02 M	0.24	2.90	5.78
2.75	1.72	0.42	4.80	8.40 EH
3.50	2.14 H	0.53	_	

¹ On wet or "soft" soils, a larger "foot" may be used (Soil Survey Staff, 1993).

² Each bolded value highlights the force associated with a rounded value on the penetrometer scale that is closest to a *Penetration Resistance Class* boundary. The bolded letter represents the *Penetration Resistance Class* from the following table (e.g., **M** indicates the *Moderate* class).

³ Each spring type spans only a part of the range of penetration resistance possible in soils; various springs are needed to span all *Penetration* Resistance Classes.

Penetration Resistance Class	Code	Criteria: Penetration Resistance (MPa)
Extremely Low	EL	< 0.01
Very Low	VL	0.01 to < 0.1
Low	L	0.1 to < 1
Moderate	М	1 to < 2
High	Н	2 to < 4
Very High	VH	4 to < 8
Extremely High	EH	≥ 8

EXCAVATION DIFFICULTY - The relative force or energy required to dig soil out of place. Describe the **Excavation Difficulty Class** and the moisture condition (*moist* or *dry*, but not wet); use the "(Soil) Water State Table"; e.g., *moderate*, *moist* or *M*, *M*. Estimates can be made for either the most limiting layer or for each horizon.

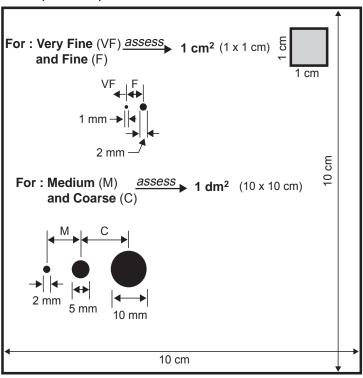
Class	Code	Criteria
Low	L	Excavation by tile spade requires arm pressure only; impact energy or foot pressure is not needed.
Moderate	М	Excavation by tile spade requires impact energy or foot pressure; arm pressure is insufficient.
High	Н	Excavation by tile spade is difficult, but easily done by pick using over-the-head swing.
Very High	VH	Excavation by pick with over-the-head swing is moderately to markedly difficult. Backhoe excavation by a 50-80 hp tractor can be made in a moderate time.
Extremely High	EH	Excavation via pick is nearly impossible. Backhoe excavation by a 50-80 hp tractor cannot be made in a reasonable time.

Record the **Quantity**, **Size**, and **Location** of roots in each horizon. **NOTE**: Describe **Pores** using the same **Quantity** and **Size** classes and criteria as **Roots** (use the combined tables). A complete example for roots is: *Many*, *fine*, roots *In Mat at Top of Horizon* or 3, *f (roots)*, *M*.

ROOTS (and PORES) – QUANTITY (Roots and Pores) - Describe the quantity (number) of roots for each size class in a horizontal plane. (NOTE: Typically, this is done across a vertical plane, such as a pit face.) Record the average quantity from 3 to 5 representative unit areas. CAUTION: The unit area that is evaluated varies with the Size Class of the roots being considered. Use the appropriate unit area stated in the Soil Area Assessed column of the "Size (Roots and Pores)" table. In NASIS and PDP, record the actual number of roots/unit area (which outputs the appropriate class). Use class names in narrative description.

Quantity Class ¹	Co	ode	Average Count ²	
·	Conv.	NASIS	(per assessed area)	
Few	1	#	< 1 per area	
Very Few ¹	_	#	< 0.2 per area	
Moderately Few 1	_	#	0.2 to < 1 per area	
Common	2	#	1 to < 5 per area	
Many	3	#	≥ 5 per area	

¹ The Very Few and Moderately Few sub-classes can be described for roots (optional) but do not apply to pores.

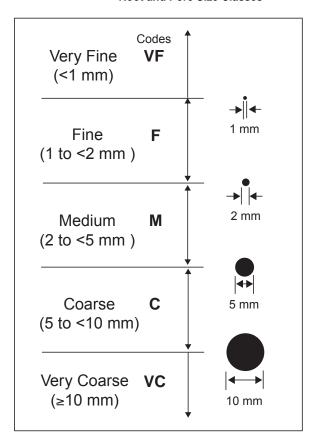

ROOTS (and **PORES) – SIZE** - See the following graphic for size.

Size Class	Code		Diameter	Soil Area
	Conv.	NASIS		Assessed 1
Very Fine	vf	VF	< 1 mm	1 cm ²
Fine	f	F	1 to < 2 mm	1 cm ²
Medium	m	M	2 to < 5 mm	1 dm ²
Coarse	со	С	5 to < 10 mm	1 dm ²
Very Coarse	VC	VC	≥ 10 mm	1 m ²

One $dm^2 = a$ square that is 10 cm on a side, or 100 cm².

The applicable area for appraisal varies with the size of roots or pores. Use the appropriate area stated in the Soil Area Assessed column of the "Size (Roots and Pores) Table" or use the following graphic.

ROOTS (and PORES) - QUANTITY - Soil area to be assessed.


For: Very Coarse (VC) assess 1 m² (100 x 100 cm) (box not shown)

VC

> ✓

10 mm

Root and Pore Size Classes

ROOTS - LOCATION (Roots only) - Identify where roots occur.

Location	Code
Between peds	Р
In cracks	С
Throughout	Т
In mat at top of horizon 1	M
Matted around rock fragments	R

Describing a root mat at the top of a horizon rather than at the bottom or within the horizon, flags the horizon that restricts root growth.

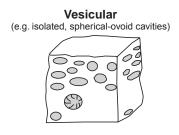
PORES (DISCUSSION)

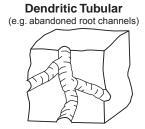
Pores are the air or water filled voids in soil. Historically, description of soil pores, called "nonmatrix" pores in the Soil Survey Manual (Soil Survey Staff, 1993), excluded inter-structural voids, cracks, and in some schemes, interstitial pores. *Inter-structural voids* (i.e., the sub-planar fractures between peds; also called interpedal or structural faces/planes), which can be inferred from soil structure descriptions, are not recorded directly. *Cracks* can be assessed independently (Soil Survey Staff, 1993). *Interstitial pores* (i.e. visible, primary packing voids) may be visually estimated, especially for fragmental soils, or can be inferred from soil porosity, bulk density, and particle size distribution. Clearly, one cannot assess the smallest interstitial pores (e.g., < 0.05 mm) in the field. Field observations are limited to those that can be seen through a 10X hands lens, or larger. Field estimates of interstitial pores are considered to be somewhat tenuous, but useful.

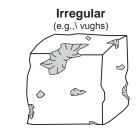
PORES

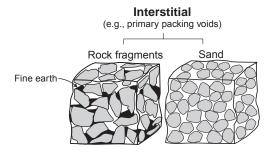
Record **Quantity** and **Size** of pores for each horizon. Description of soil pore **Shape** and **Vertical Continuity** is optional. A complete example for pores is: *common, medium, tubular pores, throughout* or *c, m, TU (pores), T.*

PORES - QUANTITY - See and use Quantity (Roots and Pores).

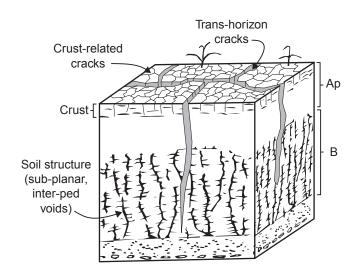

PORES - SIZE - See and use Size (Roots and Pores).


PORES - SHAPE (or Type) - Record the dominant form (or "type") of pores discernible with a 10X hand lens and by the unaided eye. [See following graphic.]


Description	Code		Criteria
	PDP	NASIS	
SOIL PORES	1		
Dendritic Tubular	TE	DT	Cylindrical, elongated, branching voids; e.g., empty root channels.
Irregular	_	IG	Non-connected cavities, chambers; e.g., <i>vughs</i> ; various shapes.
Tubular	TU	TU	Cylindrical and elongated voids; e.g., worm tunnels.
Vesicular	VS	VE	Ovoid to spherical voids; e.g., solidified pseudomorphs of entrapped, gas bubbles concentrated below a crust, most common in arid to semi-arid environments.
PRIMARY PACKING VOIDS 2			DS ²
Interstitial	IR	IR	Voids between sand grains or rock fragments.


- Called "Nonmatrix Pores" in the Soil Survey Manual (Soil Survey Staff, 1993).
- ² Primary Packing Voids include a continuum of sizes. As used here, they have a minimum size that is defined as pores that are visible with a 10X hand lens. Primary Packing Voids are called "Matrix Pores" in the Soil Survey Manual (Soil Survey Staff, 1993).

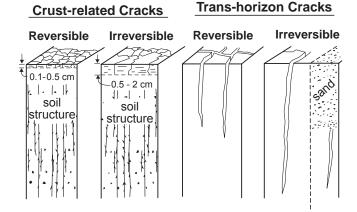
Tubular (e.g. small worm tunnels)



PORES - VERTICAL CONTINUITY - The average vertical distance through which the minimum pore diameter exceeds 0.5 mm. Soil must be moist or wetter.

Class	Code		Criteria:
	Conv.	NASIS	vertical distance
Low	_	L	< 1 cm
Moderate	_	М	1 to < 10 cm
High	_	Н	≥ 10 cm

CRACKS


Cracks (also called "Extra-Structural Cracks"; Soil Survey Staff, 1993) are fissures other than those attributed to soil structure. Cracks are commonly vertical, sub-planar, polygonal, and are the result of desiccation, dewatering, or consolidation of earthy material. Cracks are much longer and can be much wider than planes that surround soil structural units such as prisms, columns, etc. Cracks are key to preferential flow, also called "bypass flow" (Bouma, et al., 1982) and are a primary cause of temporal (transient) changes in ponded infiltration and hydraulic conductivity in soils (Soil Survey Staff, 1993). Cracks are primarily associated with, but not restricted to, clayey soils and are most pronounced in high shrink-swell soils (high COLE value). Record the **Relative Frequency** (estimated average number per m²), **Depth** (average) and **Kind**. A complete example is: 3, 25 cm deep, reversible trans-horizon cracks.

CRACKS - KIND - Identify the dominant types of fissures.

Kind	Code 1	General Description			
CRUST-RELATED CRACKS ² (shallow, vertical cracks related to crusts; derived from raindrop-splash and soil puddling, followed by dewatering / consolidation and desiccation)					
Reversible Crust-Related Cracks ³	RCR	Very shallow (e.g., 0.1 - 0.5 cm); very transient (generally persist less than a few weeks); formed by drying from surface down; minimal, seasonal influence on ponded infiltration (e.g., rain–drop crust cracks).			
Irreversible Crust-Related Cracks ⁴	ICR	Shallow (e.g., 0.5 - 2 cm); seasonally transient (not present year-round nor every year); minor influence on ponded infiltration (e.g., freeze-thaw crust and associated cracks).			
TRANS-HORIZON CRACKS ⁵ (deep, vertical cracks that commonly extend across more than one horizon and may extend to the surface; derived from wetting and drying or original dewatering and consolidation of parent material)					
Reversible Trans-Horizon Cracks ⁶	RTH	Transient (commonly seasonal; close when rewetted); large influence on ponded infiltration and K _{sat} ; formed by wetting and drying of soil; (e.g. Vertisols, vertic subgroups).			
Irreversible Trans-Horizon Cracks ⁷	ITH	Permanent (persist year-round; see Soil Taxonomy), large influence on ponded infiltration and K_{sat} (e.g., extremely coarse subsurface fissures within glacial till; drained polder cracks).			

- ¹ No conventional codes, use entire term; NASIS codes are shown.
- ² Called "Surface-Initiated Cracks" (Soil Survey Staff, 1993).
- ³ Called "Surface-Initiated Reversible Cracks" (Soil Survey Staff, 1993).
- ⁴ Called "Surface-Initiated Irreversible Cracks" (Soil Survey Staff, 1993).
- ⁵ Also called "Subsurface-Initiated Cracks" (Soil Survey Staff, 1993).
- ⁶ Called "Subsurface-Initiated Reversible Cracks" (Soil Survey Staff, 1993).
- ⁷ Called "Subsurface-Initiated Irreversible Cracks" (Soil Survey Staff, 1993).

CRACKS - DEPTH - Record the **Average**, **Apparent Depth** (also called a "depth index value" in the Soil Survey Manual), measured from the surface, as determined by the wire-insertion method (≈ 2 mm diameter wire). **NOTE**: This method commonly gives a standard but conservative measure of the actual fracture depth. Do not record this data element for cracks that are not open to the surface. Depth (and apparent vertical length) of subsurface cracks can be inferred from the *Horizon Depth* column of layers exhibiting subsurface cracks.

CRACKS - RELATIVE FREQUENCY - Record the **Average Number of Cracks**, per meter, across the surface or **Lateral Frequency** across a soil profile as determined with a line-intercept method. This data element cannot be assessed from cores or push tube samples.

SOIL CRUSTS (DISCUSSION)

C. Franks, R. Grossman, and P. Schoeneberger, NRCS, Lincoln, NE

A soil crust is a thin (e.g. <1 cm up to 10 cm thick) surface layer of soil particles bound together by living organisms and / or by minerals into a horizontal "mat" or small polygonal plates. Soil crusts form at the soil surface and have different physical and /or chemical characteristics than the underlying soil material. Typically soil crusts change the infiltration rate of the mineral soil and stabilize loose soil particles and aggregates. There are two general categories of Soil Crusts: I) Biological Crusts, and II) Mineral Crusts.

- I) Biological Crusts (also called biotic, cryptogamic, microbiotic, or microphytic crusts): a thin, biotically dominated surface layer or mat formed most commonly by cyanobacteria (blue green algae), green and brown algae, mosses, and/or lichens (NRCS, 1997: NRCS, 2001a) that forms in or on the soil surface. Various types of microbiotic crusts have been recognized based on the biological communities of which they are composed (no prevailing consensus on types of biological crusts, at present).
- II) **Mineral Crusts** (also called *abiotic*, *non-biotic* or *non-microbiotic* crusts): a thin surface layer composed of reversibly bonded soil particles or secondary mineral crystals, sometimes laminated, that is <u>not</u> physically dominated by a microbiotic "mat".
- Chemical Crusts (e.g. salt incrustations): a thin surface layer that is dominated by macro- or microcrystalline evaporites of halite (NaCl), MgSO₄, mirabilite (Na₂SO₄ 10H₂O), thenardite (Na₂SO₄), epsomite (MgSO₄ 7H₂O), hexahydrite (MgSO₄ 6H₂O), bloedite (Na₂Mg(SO₄)₂ 4H₂O), konyaite (Na₂Mg(SO₄)₂ 5H₂O), loeweite (Na₁₂Mg₇(SO₄)₁₃ 15H₂O), gypsum (CaSO₄ 2H₂O); (Singer and Warrington, 1992; Doner and Lynn, 1998), or other minerals. Other surficial mineral incrustations (e.g. from acid mine drainage or other sources) are included within this group.
- Physical Crusts: a physically reconstituted, reaggregated, or reorganized surface layer composed predominantly of primary mineral particles.
 - a). Raindrop Impact Crust (also called a structural crust): a thin layer that forms due to <u>raindrop impact</u>, which causes the clay in the soil to disperse, and subsequently hardens into a massive structureless or platy surface layer when it dries (Singer and Warrington, 1992).

- b). Depositional Crust (also called a "fluventic zone"; Soil Survey Staff, 1993) is a surface layer, commonly laminated and of variable thickness, consisting of small aggregates of primary mineral grains deposited by short-range runoff, and subsequently dried (Singer and Warrington, 1992).
- c). Freeze Thaw Crust (Soil Survey Staff, 1993). A seasonal, 1 5 cm thick surface sediment layer occurring on bare ground that has been disaggregated or puddled by radiant heating and cooling to produce freeze / thaw cycles while Very Moist or Wet. Commonly, the layer is composed of interlocking, 5-20 cm diameter polygonal plates, separated by 1-2 cm wide cracks which extend to the base of the crust and do not completely close upon wetting; Dry Rupture Resistance is ≤ Moderate.
- d). Vesicular Crust a surface soil layer or zone characterized by 0.5 2 mm diameter, spherical or ovoid, <u>discontinuous</u> pores that are visible to the naked eye, and comprise a substantial portion of the matrix volume (i.e. ≥ 20 % cross-sectional area). These vesicles are believed to form when the pores between clay particles in platy soil structure are subjected to repeated wetting and drying. If soil aggregates become particularly unstable when they become saturated, air pressure may form small round voids (e.g. "bubbles") that remain when the soil dries (Blackburn, et al., 1975). Vesicular crusts occur primarily in arid and semi-arid areas.

SOIL CRUSTS

Soil Crusts – Record the presence of any surface crust. In NASIS, record under Special Features (proposed as a separate NASIS data element). No entry implies that no crust is present.

Description: Soil crusts can be identified and recorded by Kind. Additional suggested descriptions may include: Rupture Resistance (Surface Crusts and Plates), Porosity (Kind), Size, Diameter, Thickness, Amount (Cross-sectional ground coverage), and Color.

SOIL CRUSTS - KIND:

Kind	Criteria:
BIOLOGICAL CRUSTS	(biotically dominated surface "mat" of algae, lichens, mosses, etc.; also called biotic, cryptogamic, microbiotic or microphytic crusts; slightly flexible when moist)
MINERAL CRUSTS	(reversibly bonded primary, secondary mineral grains; not biotically dominated; rigid when moist or dry)
Chemical Crusts	(evaporite crystals, e.g. NaCl)
Physical Crusts	(reorganized, reconstituted)
raindrop impact crust	(dispersed, puddled, dried)
depositional crust	(sediments of variable thickness)
freeze – thaw crust	(bare ground, small polygons)
vesicular crust / zone	(substantial discontinuous, spherical or ovoid pores; e.g., 0.5 – 4 mm diameter)

SPECIAL FEATURES

Record the **Kind** and **Area (%) Occupied**. Describe the special soil feature by kind, and estimate the cross sectional area (%) of the horizon that the feature occupies. In PDP, three items are grouped in this data element: 1) **Special Features** - both Kind (e.g., *krotovinas* and *tongues*) and the Percent (%) of Area Covered (the area a feature occupies within a horizon); 2) **Percent of Profile** - estimate the area of the profile an individual horizon comprises; and 3) **Percent (Volume) of Pedon** occupied; e.g. *lamellae*, *15%*.

SPECIAL FEATURES - KIND [Called **Horizon Feature Kind** in NASIS] Identify the kind of special soil feature.

Kind	Code 1	Criteria		
desert pavement	DP	A natural, concentration of closely packed and polished stones at the soil surface in a desert (may or may not be an erosional lag).		
hydrophobic layer	HL	Either a surface or subsurface layer that repels water (e.g. dry organic materials; scorch layers in chaparral, etc.).		
ice wedge cast	IC	A vertical, often trans-horizon, wedge-shaped or irregular form caused by infilling of a cavity as an ice wedge melts, commonly stratified.		
krotovinas	KR	Filled faunal burrows.		
lamellae ²	LA	Thin (e.g., > 0.5 cm), pedogenically formed plates or intermittent layers.		
lamina	LN	Thin (e.g., < 1 cm), geogenically deposited strata or layers of alternating texture (e.g., silt and fine sand or silt and clay).		
microbiotic crust	MC	Thin, biotically dominated ground or surface crusts; e.g., cryptogamic crust (algae, lichen, mosses, or cyanobacteria), biological or microphytic.		
stone line	SL	A natural concentration of rock fragments caused by water erosion or transport erosional lag (i.e. carpedolith).		
tongues of albic material	E	Small areas or lobes of albic material that dip down (interfinger) more than 5 cm into non-albic material.		
tongues of argillic material	В	Small areas or lobes of argillic material that dip down (interfinger) more than 5 cm into non-argillic material.		

Conventional codes consist of the entire name; e.g., *Tongues of Albic Material*. Consequently, no *Conv. code* is shown.

SPECIAL FEATURES - AREA (%) OCCUPIED - Estimate the cross sectional area (%) of the horizon that the feature occupies.

² In NASIS, described under **Diagnostic Horizon or Property-Kind**

PERMEABILITY / SATURATED HYDRAULIC CONDUCTIVITY (DISCUSSION)

Permeability — The NRCS concept of permeability was originally derived from the "permeability coefficient" as used by engineers (Soil Survey Staff, 1951). Specifically, the permeability coefficient represents the ability of a porous medium to transmit fluids or gases. It is a <u>unitless</u> coefficient totally independent of the working fluid (e.g., water, air, hydrocarbons, molasses) or interaction between the fluid and the medium it passes through.

Permeability (as traditionally used by NRCS) considers only water, at field saturation, as the working fluid. This results in units of length / time: (e.g., inches / hour, cm / hr, micrometers / sec, etc.) and values that can't be extrapolated to other fluids (e.g., hydrocarbons). Furthermore, permeability (as used by NRCS) has changed through time. The original work (O'Neal, 1952) conducted under constant head, but not at unity, measured a "percolation rate" for a limited number of soil cores and referred to the permeability coefficient. Over time, the term "coefficient" was dropped and the percolation rates became the basis for SCS (NRCS) percolation classes. Extrapolation and inference from the original, modest "percolation rate" data set resulted in widespread estimations of the ability of other soils to internally transmit water. Hence, permeability (as used by NRCS) is now a qualitative estimate whose "values" (i.e., classes) are inferred from soil texture or other proxies instead of actual measurements (Exhibit 618-9, NSSH; Soil Survey Staff, 2001). It is a soil quality, as is soil tilth, which can be estimated but not directly quantified. Therefore, permeability and permeability classes are not K_{sat}.

Hydraulic Conductivity (K) — is a seemingly similar, yet different parameter for measuring a soil's ability to transmit water. Hydraulic conductivity quantifies a material's ability to transmit water under standard conditions and units (pressure, length, cross-sectional area). Hydraulic conductivity is a numerical variable in an equation that can be either measured or estimated. It is one of the terms in Darcy's law: Q = KAi, [where "Q" is outflow (volume), "K" is the hydraulic conductivity of the material, "A" is the area through which the fluid moves per unit time, and "i" is the pressure gradient (Δ Head / Δ Length); (Amoozegar and Warrick, 1986; Bouma, et al., 1982)].

Hydraulic conductivity under saturated conditions is called **Saturated Hydraulic Conductivity** (**K**_{sat}) and is the easiest condition to assess. It is also the most common reference datum used to compare water movement in different soils, layers, or materials and has become the current "industry standard".

Permeability is a qualitative estimate of the relative ease with which soil transmits water. Hydraulic conductivity is a specific mathematical coefficient (quantitative) that relates the rate of water movement to the hydraulic gradient.

Direct measurement of saturated hydraulic conductivity (K_{sat}) is strongly recommended rather than an estimation of permeability inferred from other soil properties. **NOTE**: It's highly recommended to determine the K_{sat} of a soil layer by averaging at least three determinations (\approx replications); more reps (e.g., \ge 5) are preferred. K_{sat} is notoriously variable due to unequal distribution of soil pores and temporal changes in some soil voids (e.g., cracks, bio-pores, etc.). Replications help to capture the natural variation of K_{sat} within soils and to reduce the influence of data population outliers.

NOTE: Permeability and K_{sat} are not synonyms and should not be treated as such.

PERMEABILITY

Estimate the **Permeability Class** for each horizon. Guidelines for estimating permeability are found in Exhibit 618-9, NSSH (Soil Survey Staff, 2001).

Permeability	Code		Criteria:
Class	PDP	NASIS	estimated in / hr 1, 2
Impermeable	IM	IM	< 0.0015
Very Slow	VS	VS	0.0015 to < 0.06
Slow	S	SL	0.06 to < 0.2
Moderately Slow	MS	MS	0.2 to < 0.6
Moderate	М	MO	0.6 to < 2.0
Moderately Rapid	MR	MR	2.0 to < 6.0
Rapid	RA	RA	6.0 to < 20
Very Rapid	VR	VR	≥ 20

¹ These class breaks were originally defined in English units and are retained here, as no convenient metric equivalents are available.

SATURATED HYDRAULIC CONDUCTIVITY (Ksat)

Saturated Hydraulic Conductivity is used to convey the rate of water movement through soil under (field) saturated conditions. Record the $Average\ K_{sat}\ (X),$ $Standard\ Deviation\ (s),$ and $Number\ of\ Replications\ (n)$ of each major layer/horizon as measured with a constant-head method (e.g., Amoozemeter, Guelph Permeameter, etc.). NOTE: This data element should be measured rather than estimated and subsequently placed into classes. Estimates of water movement based on texture or other proxies must use the preceding "Permeability Class Table."

To convert µm / sec (NASIS Permeability, Ksat units) to in / hr, multiply µm / sec by 0.1417; e.g. (100 µm / sec) x (0.1417) = 14.17 in / hr. To convert in / hr to µm / sec multiply by 7.0572.

K _{sat}	Code 1		Criteria ²		
Class	PDP	NASIS	cm / hr	in / hr	
Very Low	1	#	< 0.0036	< 0.001417	
Low	2	#	0.00360 to < 0.036	0.001417 to < 0.01417	
Mod. Low	3	#	0.0360 to < 0.360	0.01417 to < 0.1417	
Mod. High	4	#	0.360 to < 3.60	0.1417 to < 1.417	
High	5	#	3.60 to < 36.0	1.417 to < 14.17	
Very High	6	#	≥ 36.0	≥ 14.17	

There are no "codes" for K_{sat}: record the average of measured K_{sat} values (#) which can then be assigned to the appropriate class.

CHEMICAL RESPONSE

Chemical response is the response of a soil sample to an applied chemical solution or a measured chemical value. Responses are used to identify the presence or absence of certain materials; to obtain a rough assessment of the amount present; to measure the intensity of a chemical parameter (e.g., pH.); or to identify the presence of chemical species (e.g. Fe ⁺²) in the soil.

REACTION (pH) - (Called Field pH in NASIS) Record **pH** and **Method**; record the pH value to the precision limit of the method (e.g. to the nearest tenth). The preferred method is pH meter for 1:1 (water:soil). In PDP and NASIS, record **pH** and the method used (e.g., 1:1 water:soil, CaCl₂, Lamotte, etc.).

Descriptive Term	Code 1	Criteria: pH range
Ultra Acid	#	< 3.5
Extremely Acid	#	3.5 to 4.4
Very Strongly Acid	#	4.5 to 5.0
Strongly Acid	#	5.1 to 5.5
Moderately Acid	#	5.6 to 6.0
Slightly Acid	#	6.1 to 6.5
Neutral	#	6.6 to 7.3
Slightly Alkaline	#	7.4 to 7.8
Moderately Alkaline	#	7.9 to 8.4
Strongly Alkaline	#	8.5 to 9.0
Very Strongly Alkaline	#	> 9.0

¹ No "codes"; enter the measured value.

² For alternative units commonly used for these class boundaries [e.g., Standard International Units (Kg s / m³)], see the Soil Survey Manual (Soil Survey Staff, 1993; p 107).

EFFERVESCENCE - The gaseous response (seen as bubbles) of soil to applied HCl (carbonate test), H_2O_2 (Mn O_2 test), or other chemicals. Commonly, \approx 1 N HCL is used. Apply the chemical to the soil matrix (for HCL, Effervescence Class refers only to the matrix; do not include carbonate masses, which are described separately as "Concentrations"). Record the observed response (**Effervescence Class**) and the **Chemical Agent** used. A complete example is: $strongly\ effervescent\ with\ 1N-HCL\ or\ 2,\ I.$ In PDP, record percent of carbonate (measured with a carbonate field kit) as a **Field Measured Property**.

Effervescence - Class

Effervescence Class	Co	de	Criteria					
	PDP	NASIS						
Noneffervescent	4	NE	No bubbles form.					
Very Slightly Effervescent	0	VS	Few bubbles form.					
Slightly Effervescent	1	SL	Numerous bubbles form.					
Strongly Effervescent	2	ST	Bubbles form a low foam.					
Violently Effervescent	3	VE	Bubbles form a thick foam.					

Effervescence - Location - [obsolete in NASIS] Use locations and codes from **(Ped and Void) Surface Features - Location**. **NOTE**: The requirement to apply chemical agents (e.g., HCL acid) to the soil matrix makes many Location choices invalid.

Effervescence - Chemical Agent

Effervescence Agent	Co	ode	Criteria
_	PDP	NASIS	
HCI (unspecified) ¹	Н	H1	Hydrochloric Acid: Concentration Unknown
HCI (1N) 1, 2	I	H2	Hydrochloric Acid: Concentration = 1 Normal
HCI (3N) 1, 3	J	H3	Hydrochloric Acid: Concentration = 3 Normal
HCI (6N) ^{1, 4}	-	H4	Hydrochloric Acid: Concentration = 6 Normal
H ₂ O ₂ (unspecified) ^{5, 6}	Р	P1	Hydrogen Peroxide: Concentration Unknown
H ₂ O ₂ 5, 6	0	P2	Hydrogen Peroxide: Concentration 3-4%

Positive reaction indicates presence of carbonates (e.g., CaCO₃).

- Concentration of acid preferred for the Effervescence field test. NOTE: A (1N HCl) solution is made by combining 1 part concentrated (37%) HCl (which is widely available) with 11 parts distilled H₂O.
- This concentration is not used for determining Effervescence Class, but is required for the Calcium Carbonate Equivalent test (CO₂ evolution, rather than "effervescence"). An approximately 3N HCl solution (actually 10% HCl or 2.87N) is made by combining 6 parts concentrated (37%) HCl (which is widely available) with 19 parts distilled H₂O.
- This concentration is not used for determining Effervescence Class for soil carbonates (see footnote 2). A 6N HCl solution is used to distinguish between calcium carbonates and dolomitic carbonates. A 6N HCl solution is made by combining 1 part concentrated (37%) HCl (which is widely available) with 1 part distilled H₂O. Soil sample should be saturated in a spot plate and allowed to react for 1-2 minutes; froth = positive response. Reaction is slower and less robust than CaCO₃ effervescence.
- 5 Rapid, positive reaction indicates presence of manganese oxides (e.g., MnO₂).
- 6 Some forms of organic matter will react slowly with (3-4%) H₂O₂, whereas Mn–oxides reacts rapidly.

REDUCED CONDITIONS -(called Reaction to alpha-dipyridl in NASIS)

Chemical Agent	Code	Criteria
α , α '-dipyridyl ¹ (0.2% conc. ²)	P (= positive) N (= negative)	red or pink color develops no color develops
(0.2 /0 00/10:)	it (nogalivo)	no color dovolopo

Positive reaction indicates presence of Fe⁺² (i.e., reduced conditions).

SALINITY - The concentration of dissolved salts (more soluble than gypsum; e.g., NaCl) in a saturated paste extract. Estimate the **Salinity Class**. If the electrical conductivity is measured, record the actual value and method used.

Salinity Class	Code	Criteria: 1 (Electrical Conductivity) dS/m (mmhos/cm)
Non-Saline	0	< 2
Very Slightly Saline	1	2 to < 4
Slightly Saline	2	4 to < 8
Moderately Saline	3	8 to < 16
Strongly Saline	4	≥ 16

¹ As determined by Saturated Paste Extract method.

² Childs, 1981

SODIUM ADSORPTION RATIO (SAR) - An estimate of the equilibrium between sodium (Na) in solution and exchangeable Na adsorbed on the soil (Soil Survey Staff, 1995). It is applied to soil solution extracts and irrigation waters. The SAR is expressed as a ratio. It is calculated as: SAR = [Na⁺] / [([Ca⁺²] + [Mg⁺²]) / 2]^{0.5}, where the cation concentration in milliequivalents per liter. As a field method, it is commonly determined with soil paste and an electronic wand.

ODOR

Record the presence of any strong smell, by horizon. No entry implies no odor.

Odor - Kind	Code	Criteria
None	N	No odor detected
Petrochemical	Р	Presence of gaseous or liquid gasoline, oil, creosote, etc.
Sulphurous	S	Presence of H ₂ S (hydrogen sulfide); "rotten eggs"; commonly associated with strongly reduced soil containing sulfur compounds.

MISCELLANEOUS FIELD NOTES

Use additional adjectives, descriptors, and sketches to capture and convey pertinent information and any features for which there is no pre-existing data element or code. Record such additional information as free-hand notes under **Field Notes** ("User Defined Entries" in PDP).

MINIMUM DATA SET (for a soil description)

Purpose, field logistics, habits, and soil materials all influence the specific properties necessary to "adequately" describe a given soil. However, some soil properties or features are so universally essential for interpretations or behavior prediction that they should always be recorded. These include: Location, Horizon, Horizon Depth, Horizon Boundary, Color, Redoximorphic Features, Texture, Structure, and Consistence.

PROFILE DESCRIPTION DATA SHEET

Over the decades, field data for soils have been documented in various ways. For many years soil descriptions were made on small blue cards (SCS-SOI-232 form: USDA-SCS; various versions, dates, and locations of issuance). In recent years much data was entered into multi-page PEDON (PDP) data sheets (SCS-SOI-232; 3/87). Since NRCS reorganization in 1995, many MLRA Soil Survey Region Offices (MO's) and other groups have generated informal, locally-tailored data sheets.

The following data sheet is provided as an option to record basic soil description information. It was developed from a 5/97 draft produced at the NRCS-MO6 office (Lakewood, CO). This revised data sheet contains the most widely used soil descriptors (e.g. Depth, Color, etc.). Other descriptors (called data elements in NASIS) should be added as needed in blank boxes or in the **Miscellaneous Field Notes** box.

p. 2-75

PROFILE DESCRIPTION EXAMPLE

A completed profile description data sheet is included to demonstrate recording soil information in the field.

Most field descriptions will likely be entered into an electronic database by the describer or must be deciphered by other scientists. Therefore, descriptions should use reasonably pneumonic abbreviations, standard codes, a combination of these, or be written in "longhand" (using complete words). The example uses all of these notations

Soil descriptions in Soil Survey Reports or other NRCS products should follow proscribed formats and descriptor sequences (i.e. NSSH – Part 614; Soil Survey Staff, 2001b).

p. 2-77

PROFILE DESCRIPTION REPORT EXAMPLE (for Soil Survey Reports)

[To be developed.]

USDA-NRCS							Р	EDON	DESC	RIPTI	ON	F	PEDON	ID#	:			DRA	FT 3/200	2
Series or Co	mponent	Name:			N	Map Unit Sym	bol: F	hoto #:	Classification	on:							Soil Mo	st. Regir	ne (Tax.):	
Describer(s):		Date:		V	Weather:	Temp	o.: Air:		Latitude:	0	•	" N	Datu	ım:	Loca	ion:			-
								Soil:	Depth:	Longitude:	۰	1	" W			Sec.	T.	F	l.	
UTM: Z	one :	mE:	m	N:	Topo Qu	uad:		Site ID:	Yr: State:	County:	Pedon #:	Soil Surv	ey Area:	MLRA	A / LRU:	Trans	ect: /[);		
																Stop	#:	Interv	al:	
Landscape	:	Landfor	m:	Microfea	ature: A	Anthro:		Elevation:	Aspect:	Slope (%):	Slope Con	nplexity:	Slope S	Shape:	(Up & L	On / Ac	ross)			
Hillslope Pr	rofile Pos	ition:	Geom. C	omponer	nt: N	Microrelief:	Phys	io. Division:	Physio. Pro	ovince:	Physio. Se	ction:	State Pl	hysio.	Area:	I	Local Ph	/sio. Are	a:	
Drainage:			Flooding	g:	P	onding:	Soil	Moisture Statu	ıs:	Permea	bility:			ı	Land Co	ver / U	se:			_
										K _{sat} :										
Parent Mate	rial:			Bedroc	k: Ki	íind: Frac	et.:	Hard.: D	epth:	Lithostr	at. Units:	Gr	oup:	F	ormation	ı:	Memb	er:		
Erosion:	Kind:	Degr	ee:	Runoff:			Surfac	ce Frag %:	GR: CB:	ST: BD:	: CN:	FL: Dia	gnostic	Horz. /	Prop.:		Kind:		Depth:	
P. S. Contro	I Cootion	. 4	ve. Clay 9	0/ -	Ave Rock	k Frag %:	Miliu.													\dashv
Depth Range		. 4	ve. Clay	/0.	7170.71001	KTTUG 70.														
, 0		VEC	ETATI	ON.					M	ISCELLA	NEOUS	EIELD A	IOTES	. / 6	VETC	u .				
SYMBOL			MON NAI		0/2	6 GD COVER			IVI	ISCELLA	NEOUS	LIELD I	IOTES	, , 3	KETO	1.	: :	: :	: :	
OTHIDOL					7	000001211										:				
																::				
																· · · · · · · ·				
														-		· · · · · ·				
																<u> </u>				
																ļ				
																ļ				
														\longrightarrow		ļ				
																įį.				
							<u> </u>									<u> i</u>				
																ii				
																<u>.</u>				
																<u>.</u>				,
																įi				

				Со	mponent N	lame:					Ma	ар С	Jnit Sy	mbol:						Da	ite:				
	Obser.		Dept	th	Horizon	Bnd	Matr	ix Color	Texture	Roo	k Frags		Str	ucture			Consis	tence		Mot	tles				
	Method	(ir	1)	(cm)			Dry	Moist		Knd %	Rnd	Sz	Grade	Sz T	уре	Dry	Mst	Stk	Pls	%	Sz C	n C	ol Ms	t Sp	Loc
1																									
2																									
3																									
4																									
5																									
6																									
7																									
8																									
9																									
10																									
_	Podovimorphia Fosturos C						ncontrations		Ped / V Surfa	Ft		Roo		Pore		nH		Clay	005	_		NI.	ntes		

	Redoximorphic Features	Concentrations	Ped / V. Surface Features	Roots	Pores	pH Effer (Clay CCE	Notes
		% Sz Cn Hd Sp Kd Loc Bd Col	% Dst Cont Kd Loc Col	Qty Sz Loc	Qty Sz Shp	(meth) (agent)	%	
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								

USDA-NRCS 2-76 September 2002

USDA-NRCS					PE	DON	DESC	RIPTI	ON	F	PEDON	ID #:		DRAFT	3/2002	
Series or Component Caveat Emp				Map Unit Symbo	ol: Ph	oto #: 127A	Classificatio fine, sm	n: nectitic,	mesic,	Туріс А	rgiudo	oll	Soil Moist. Regime (Tax.): Udic (≈ 27" annual)			
Describer(s):		Date:	2/2000	Weather:	Temp.:	: Air: 78 ° [Latitude:	40 ° 49	9 ' 10.0	" N	Datum:	Location: /	IE 1/4, SW	1/4	
PJS & DAW 10/12/2000			2/2000	sunny		Soil:	Depth:	Longitude:	96 ° 46	' 06.1	" W	NAD '83	Sec. 20 T.	10N r.	6E	
				Quad:Emerald	i, NE		r: State:		Pedon #:	Soil Surve	ey Area:	MLRA / LRU:	Transect:	ID: 2		
			7.5	topo 1978		S 200)2 NE -	109 -	006	Lancas	ter, Co	106	Stop #: 6	Interval	: 10m	
Landscape: upland	Anthro: furrow		Elevation: 1240 '	Aspect: 34 °E	Slope (%):		Complexity: Simple Slope Shape: (Up & Dn / Across) V V (CONVEX, CONVEX)									
Hillslope Profile Posi shoulder	tion:		omponent: slope	Microrelief: micro-low	Physio. Division: Physio. Province: Physio. Section: Dissected Till Plain					ysio. Area:	Local Physio. Area: Middle Creek Basin					
Drainage: WD (Well Drained)		Flooding NONE	:	Ponding: NONE		loisture Status 1015†	5 :		bility: Slow bw (ave.= 0. n=3; depth				ver/Use: beans (CF	?C)		
Parent Material: loess, over pedisediment, over till Sandstone						Hard.: De cent gully)	pth: > 15 M		at. Units: a Loess, (oup: Canyon	Formation , unnamed		mber: ment,unnar	ned till	
Erosion: R Kind: (Rill)	Degr	ee:	-	. 1 1!	Surface Kind:	Frag %:	GR: CB: - () -	ST: BD:	CN:	FL: Dia	ignostic l	Horz. / Prop.:	Kir molli argill	0 - 3		
P. S. Control Section : Depth Range: 30 -		ve. Clay % n 3	· -	ock Frag %: < 1%												

	VEGETATION:	
SYMBOL	COMMON NAME	% GD COVER
GLYCI	Soybean stubble Crabgrass	1%
DIGIT2	Crabgrass	5%

	N	IISCE	LLANEOU	JS FIELD NOTES / SKETCH:
deep polygo	nal joints ir	n till:		M cm : : : : : : : : : : : : : : : : : :
≈ 30° ang	le; 10 - 20 cr	n diam.		loess Ap 20 black
/-	∠Q, white, Ca	aCO ₃	Peoria.	A 30:3:3333:33:3:3:
	/ / lined sea	ams	Loess	Bt 1 sil
	/ (1-4 cm dia	am.)		colluvial loess Bt 2 0 0 0 0 0 brown with scattered gr. 0 0 0 0 brown loam
9//		Cilla	nan Canyon 🗸	1 90 0 0 0 0 0 0 0
bounded by bro		GIIIII	iaii Caiiyuii 🔻	Colluviar loess 2 Bt 3
Fe / Mn zone w	hich is	pedis	ediment	130 00000000000000000000000000000000000
bounded by			ĺ	red paleosol 3B 145 () \$ \$ \$ \$ \$ \$ \$ red Cl
yellow / br.				weathered, 4Bt 1 // // //
Fe (goethite)				oxidized 4Bt 2 160: :: //: //: : //: :: brown leached 2 :: : //: //: : cl:
halo at		Pre-I	llinoian till <	mottled, unoxidized, 4 BC 210: // // grayish
250 cm				
depth.				mottled, unoxidized, 4C in all a mottled, unoxidized, 4C in all a mottled in a
				unleached 260+ Soil:Topple debris : :

		Со	mponent N	lame:				Мар	Unit Symbol:					Date:	
	Obser.	Depth	Horizon	Bnd	Matı	rix Color	Texture	Rock Frags	Structure		Consis	tence		Mottles	
	Method	(in) (cm)			Dry	Moist		Knd % Rnd Sz	Grade Sz Type	Dry	Mst	Stk	Pls	% Sz Cn (ol Mst Sp Loc
1	LP	0 – 20	Ар	Abrupt Smooth	10YR 4/2	10YR 3/1	silt loam (sil)	— O —	common, fine & med. granular	Slightly Hard	Friable	non- sticky	non- plastic	N	one I
2	LP	20 – 30	А	CW	10YR 4/2	10YR 3/1	sil	— 0 —	3 f,m abk.	МН	FI	S0	PO		
3	LP	30 – 60	Bt1	GW	2.5 Y 6/2	10YR 5/3	sicl	— O —	2 m,c sbk	Н	VFI	SS	MP		
4	LP	60 – 90	2Bt2	GW	10YR 6/3	70% 10YR 4/3 30% 10YR 5/3	I SICI	2% scattered f,m rounded gr.	2 m pr ⇒ 2 m sbk	Н	VFI	SS	MP		
5	LP	90 – 130	2Bt3	AW	10YR 4/4	40% 7.5YR 4/3 60% 7.5YR 3/3	sil	2% scattered f,m rounded gr.	1 m, co. pr ⇒ 2 m sbk	МН	FI	SS	SP		
6	LP	130 – 145	3B	AW	7.5YR 5/4	7.5YR 4/6		85% f, m, co. rounded gravels mixed lithology	0 sg	L	L	S0	S0		
7	LP	145 – 160	4Bt1	GW	7.5YR 5/6	7.5YR 4/6	cl	10% f, rounded gr., mixed lithology	$2 \text{ m sbk} \Rightarrow$ 3 vf,f sbk	VH	EF	MS	MP		<u> </u>
8	LP	160 – 210	4BT2	DW	7.5YR 4/4	7.5YR 4/4	cl	1% f,m rounded gr., mixed lithology	$3 \text{ co., vco pr} \Rightarrow$ 3 f, m sbk	EH	SR	MS	MP	,	faint, 10 YR 4/3 gular, on ped faces
9	LP	210 – 230	4BC	DI	2.5YR 7/2	2.5YR 5/2	С	1% f,m rounded gr., mixed lithology	$3 \text{ co, vco pr} \Rightarrow$ 2 m sbk	EH	R	VS	VP	٨	one
10	SP	230 – 260+	4C	_	2.5YR 7/2	2.5YR 5/2	С	1% f,m rounded gr., mixed lithology	3 co, vco pr ⇒ 3 f,m abk	R	R	VS	VP	٨	one
_								as Fastures Ba	0 1/11/ 02/0	1		Clay			latas

			Ded / V. Confess Factories	99 31,11	1	Effer Clay CCE	Notes
	Redoximorphic Features	Concentrations	Ped / V. Surface Features	Roots	Pores	pH Effer Clay CCE	Notes
	% Sz Cn Hd Sp Kd Loc Bd Col	% Sz Cn Hd Sp Kd Loc Bd Col	% Dst Cont Kd Loc Col	Qty Sz Loc	Qty Sz Shp	(meth) (agent) %	
1	None	None	None	1 m T 2 vf, f T	few, very fine, dendr. tubular	5.0 * NE, H2	(* pH by pocket pH meter, 1:1 soil to water)
2				1 m T 2 vf,f T	2 vf TE	6.0 NE, H2	
3				2 vf T 1 f T	2 vf,f TE	6.7 NE, H2	
4				1 vf T 1 f T	2 vf,f TE	6.9 NE, H2	
5			 	few, very fine, between peds	2 vf TE	7.2 NE, H2	
6			20%, prominent, discontinuous clay films on rock fragments	None	3 vf,f IR	7.1 NE, H2	gravel pavement with scattered, small gully fills
7	+		85%, P, cont. (C), clay films (CLF) on all ped faces (PF)		2 vf,f TE	7.1 NE, H2	till joint ghosts remain; truncated paleosol; strong argillans & pedo. structure
8	common, med., distinct 10 YR 6/3 iron depletions in matrix		40%, D, discont. (D), CLF on PF		2 vf TE 1 f TE	7.6 NE, H2	till joints ghost and fade upwards to top at 45°; clay & Fe/Mn coated prisms
9	f, 3, P, 10 YR 2/1, MNF, APE	•	27%, D, patchy (P), CLF on ped and void faces (PVF)		2 vf TE	7.7 SL, H2	polygonal till joints ghost & tip 30° to North (downslope)
10	c, 4, P, 2.5 / N, MNF, on prism faces (APF)	c, vco, P, white, I, CaCO ₃ nodules along joints (CRK) & in matrix (MAT)	7%, P, discont., pressure faces (PRF) on pf throughout	+	1 vf,f IG	SL, H2 8.2 (nodules VE)	till joints tip 30° to North (down slope)

USDA-NRCS

2-78

September 2002

- Amoozegar, A. and A.W. Warrick. 1986. Hydraulic conductivity of saturated soils: field methods. *In*: Klute, A. (ed). 1986. Methods of soil analysis: Part 1, Physical and mineralogical methods, 2nd ed. American Society of Agronomy, Agronomy Monograph No. 9, Madison, WI.
- AASHTO. 1986a. Recommended practice for the classification of soils and soil-aggregate mixtures for highway construction purposes. AASHTO Designation: M145-82. *In:* Standard specifications for transportation materials and methods of sampling and testing; Part 1 Specifications (14th ed.). American Association of State Highway and Transportation Officials, Washington, D.C.
- AASHTO. 1986b. Standard definitions of terms relating to subgrade, soilaggregate, and fill materials. AASHTO Designation: M146-70 (1980). *In:* Standard specifications for transportation materials and methods of sampling and testing; Part 1 Specifications (14th ed.). American Association of State Highway and Transportation Officials, Washington, D.C.
- ASTM. 1993. Standard classification of soils for engineering purposes (Unified Soil Classification System). ASTM designation: D2487-92. *In*: Soil and rock; dimension stone; geosynthetics. Annual book of ASTM standards Vol. 04.08.
- Blackburn, W.H., R.E. Eckert, Jr., M.K. Wood, and F.F. Peterson. 1975. Influence of vesicular horizons on watershed management. *In:* Proceedings of ASCE Watershed Management Symposium. Logan UT, ASAE, August 11-13, 1975, ASAE, New York. pp. 494-515.
- Bouma, J., R.F. Paetzold, and R.B. Grossman, 1982. Measuring hydraulic conductivity for use in soil survey. Soil Survey Investigations Report No. 38. USDA Soil Conservation Service, U.S. Gov. Print. Office, Washington, D.C. 14 pp.
- Brewer, R. 1976. Fabric and mineral analysis of soils. Krieger Publishing Co., Huntington, NY. 482 pp.
- Bullock, P., N. Fedoroff, A. Jongerius, G. Stoops, T. Tursina, 1985. Handbook for soil thin section description. Waine Research Publications, Wolverhampton, England. 152 pp.
- Bureau of Chemistry and Soils. 1937. Soil Survey Manual. USDA Miscellaneous Publication No. 274, Washington D.C. 136 pp.

- Childs, C.W. 1981. Field tests for ferrous iron and ferric-organic complexes (on exchange sites or in water-soluble forms) in soils. Australian Journal of Soil Research. 19:175-180.
- Cruden, D.M., and D.J. Varnes, 1996. Landslide types and processes. *In*: Turner, A.K., and R.L. Schuster, eds. Landslides investigation and mitigation. Special Report 247, Transportation Research Board, National Research Council, National Academy Press, Washington, D.C. 675 pp.
- Doner, H.E., and W.C. Lynn, 1989. Carbonate, halide, sulfate, and sulfide minerals. *In*: Dixon, J.B., and Weed, S.B., (eds). 1989. Minerals in the soil environment, 2nd ed. Soil Science Society of America Book Series, No. 1, Soil Science Society America, Madison, Wl. 1244p.
- Folk, R.L. 1955. Student operator error in determination of roundness, sphericity and grain size. Journal of Sedimentary Petrology. 25:297-301.
- Guthrie, R.L. and J.E. Witty, 1982. New designations for soil horizons and layers and the new Soil Survey Manual. Soil Science Society America Journal. 46:443-444.
- Ingram, R.L. 1982. Modified Wentworth scale. *In*: Grain-size scales. AGI Data Sheet 29.1. *In*: J.T. Dutro, R.V. Dietrich, and R.M. Foose, 1989. AGI data sheets for geology in the field, laboratory, and office, 3rd edition. American Geological Institute, Washington, D.C.
- International Soil Science Society. 1951. *In:* Soil Survey Manual. 1951. Soil Survey Staff, USDA Soil Conservation Service, Agricultural Handbook No. 18, U.S. Gov. Print. Office, Washington, D.C. 214 pp.
- Jackson, J.A. (eds). 1997. Glossary of Geology, 4th Ed. American Geological Institute, Alexandria, VA. 769 pp.
- Jackson, M.L. 1969. Soil Chemical Analysis-Advanced Course. Madison, WI
- Lynn, W., and D. Williams. 1992. The making of a Vertisol. Soil Survey Horizons. 33:23-52.
- National Institute of Standards and Technology. 1990. Counties and equivalent entities of the United States, its possessions and associated areas. U.S. Dept. Commerce, Federal Information Processing Standards Publication (FIPS PUB 6-4).
- Natural Resource Conservation Service. 1997. Introduction to microbiotic crusts. USDA-NRCS, Soil Quality Institute and Grazing Lands Technology Institute, Fort Worth, Texas.

- Natural Resource Conservation Service. 2001a. Physical and biological soil crusts. USDA-NRCS, Soil Quality Institute, and National Soil Survey Center; Soil Quality Information Sheet Rangeland Information Sheet #7, Lincoln NE.
- Natural Resources Conservation Service. 2001b. Scientific Plant Names List. (unpublished internal document), National Soil Survey Center, Lincoln. NE.
- Natural Resources Conservation Service. 2001c (or most current date; electronic file). The national PLANTS database. USDA National Plant Data Center, Baton Rouge, LA. (http://plants.usda.gov).
- O'Neal, A.M. 1952. A key for evaluating soil permeability by means of certain field clues. Soil Science Society America Proceedings. 16:312-315.
- Peterson, F.F. 1981. Landforms of the basin and range province: Defined for soil survey. Nevada Agricultural Experiment Station Technical Bulletin 28, University of Nevada Reno, Reno, NV. 52 pp.
- Powers, M.C. 1953. A new roundness scale for sedimentary particles. Journal Sedimentary Petrology. 23: 117 119
- Public Building Service. Sept. 1996. Worldwide geographic location codes. U.S. General Services Administration, Washington, D.C.
- Ruhe, R.V. 1975. Geomorphology: geomorphic processes and surficial geology. Houghton-Mifflin Co., Boston, MA. 246 pp.
- Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and W.D. Broderson. 1998. Field book for describing and sampling soils, (ver. 1.1). Natural Resources Conservation Service, USDA, National Soil Survey Center, Lincoln, NE.
- Singer, M.J. and D.N. Warrington. 1992. Crusting in the western United States. In: Sumner, M.E., and B.A. Stewart (eds.) Soil Crusting - chemical and physical processes. Advances in Soil Science, Lewis Publishers, Boca Raton, Florida.
- Soil Conservation Service. 1981. Land Resource Regions and Major Land Resource Areas of the United States. USDA Agricultural Handbook 296. U.S. Gov. Print. Office, Washington, D.C.
- Soil Survey Staff. 1951. Soil Survey Manual. USDA, Soil Conservation Service, Agricultural Handbook No. 18, U.S. Gov. Print. Office, Washington, D.C. 437 pp.

- Soil Survey Staff. 1962. Identification and nomenclature of soil horizons. Supplement to Agricultural Handbook No.18, Soil Survey Manual (replacing pages 173-188). USDA, Soil Conservation Service, U.S. Gov. Print. Office, Washington. D.C.
- Soil Survey Staff. 1983. National Soil Survey Handbook, Part 603, p.45. USDA, Soil Conservation Service, U.S. Gov. Print. Office, Washington, D.C.
- Soil Survey Staff. 1993. Soil Survey Manual. USDA, Soil Conservation Service, Agricultural Handbook No. 18, U.S. Gov. Print. Office, Washington, D.C. 503 pp.
- Soil Survey Staff. 1995. Soil survey laboratory information manual. USDA, Natural Resources Conservation Service, Soil Survey Investigations Report No. 45, Version 1.0, National Soil Survey Center, Lincoln, NE. 305 pp.
- Soil Survey Staff. 1996. Pedon Description Program, version 4 design documents. National Soil Survey Center, Lincoln, NE. (unpublished)
- Soil Survey Staff. 1998. Keys to Soil Taxonomy, 8th ed. USDA, Natural Resources Conservation Service, U.S. Gov. Print. Office, Washington, D.C. 326 pp.
- Soil Survey Staff. 1999. Soil Taxonomy, 2nd ed. USDA, Natural Resources Conservation Service, Agricultural Handbook No. 436, U.S. Gov. Printing Office, Washington, D.C. 869 pp.
- Soil Survey Staff. 2001a. Data Dictionary. *In*: National Soils Information System (NASIS), Release 5.0. USDA, Natural Resource Conservation Service, National Soil Survey Center, Lincoln, NE.
- Soil Survey Staff. 2001b. National Soil Survey Handbook (electronic file). USDA, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE. (http://soils.usda.gov/procedures/handbook/ main.htm).
- Sumner, M.E. and B.A. Stewart (eds.). 1992. Soil crusting chemical and physical processes. Advances in Soil Science, Lewis Publishers, Boca Raton, Florida.
- Wysocki, D.A., P.J. Schoeneberger, H.E. La Garry. 2000. Geomorphology of soil landscapes. *In:* Sumner, M.E. (ed.). Handbook of Soil Science. CRC Press LLC, Boca Raton, FL. ISBN: 0-8493-3136-6

GEOMORPI

Vepraskas, M.J. 1992. Redoximorphic features for identifying aquic conditions. North Carolina Agricultural Research Service Technical Bulletin 301, North Carolina State University, Raleigh, NC. 33 pp.

GEOMORPHIC DESCRIPTION

GEOMORPHIC DESCRIPTION SYSTEM

(Version 3.1 - 04/24/2002)

P.J. Schoeneberger, D.A. Wysocki, NRCS, Lincoln, NE

PART I: PHYSIOGRAPHIC LOCATION

- A) Physiographic Division
- B) Physiographic Province
- C) Physiographic Section
- D) State Physiographic Area
- E) Local Physiographic / Geographic Name

PART II: GEOMORPHIC DESCRIPTION

- A) Landscape
- B) Landform
- C) Microfeature
- D) Anthropogenic Features

PART III: SURFACE MORPHOMETRY

- A) Elevation
- B) Slope Aspect
- C) Slope Gradient
- D) Slope Complexity
- E) Slope Shape
- F) Hillslope Profile Position
- G) Geomorphic Component
 - 1. Hills
 2. Terraces S
 - 2. Terraces, Stepped Landforms
 - 3. Mountains
 - 4. Flat Plains
- H) Microrelief
- I) Drainage Pattern

NOTE: Italicized NASIS short-codes, if available, follow each choice.

PART I: PHYSIOGRAPHIC LOCATION

Reference for items **A**, **B**, & **C**: Physiographic Divisions of the U.S. (Fenneman,1946), and Alaskan Physiographic Areas (Wahrhaftig, 1965).

PHYSIOGRAPHIC DIVISIONS (A) PHYSIOGRAPHIC PROVINCES (B) PHYSIOGRAPHIC SECTIONS (C)

Laurentian Upland	LU	1.	Superior Upland	SU
Atlantic Plain	AP	2.	Continental Shelf	CS
		3.	Coastal Plain a. Embayed section b. Sea Island section c. Floridian section d. East Gulf Coastal plain e. Mississippi alluvial valley f. West Gulf Coastal plain	CP EMS SIS FLS EGC MAV WGC
Appalachian Highlands	АН	4.	Piedmont Province a. Piedmont upland b. Piedmont lowlands	PP PIU PIL
		5.	Blue Ridge Province a. Northern section b. Southern section	BR NOS SOS
		6.	Valley and Ridge Province a. Tennessee section b. Middle section c. Hudson Valley	VR TNS MIS HUV
		7.	St. Lawrence Valley a. Champlain section b. St. Lawrence Valley,	SL CHS
			- northern section	NRS
		8.	Appalachian Plateau a. Mohawk section b. Catskill section c. Southern New York sect. d. Allegheny Mountain sect. e. Kanawaha section f. Cumberland Plateau sect. g. Cumberland Mountain sect.	AP MOS CAS SNY AMS KAS CPS CMS

		b. New England upland sect.c. White Mountain sectiond. Green Mountain section	NE SLS IEU 'MS MS TAS
		10. Adirondack Province	AD
Interior Plains	IN	b. Lexington lowland L c. Nashville basin A	IL IRS LEL IAB /ES
		b. Western lake section c. Wisconsin driftless section d. Till plains e. Dissected till plains	CL ELS VLS VDS TIP OTP
		a. Missouri plateau, glaciated M b. Missouri plateau, unglaciated M c. Black Hills d. High Plains e. Plains Border f. Colorado Piedmont g. Raton section h. Pecos valley i. Edwards Plateau Missouri plateau E Missouri plateau F E G H H H H H H H H H H H H	GP IPG IPU BLH HIP PLB COP RAS PEV EDP CTS
		n includes portions of Alaska skan Physiographic Areas")	
Interior Highlands	ΙΗ	a. Springfield-Salem plateaus S	OP SSP OM
		a. Arkansas Valley A	OU IRV UM

Rocky Mountain	RM	16. Southern Rocky Mountains	SR
System		17. Wyoming Basin	WB
		18. Middle Rocky Mountains	MR
		19. Northern Rocky Mountains	NR
		sion includes portions of Alaska laskan Physiographic Areas")	
Intermontane Plateaus	IΡ	20. Columbia Plateaua. Walla Walla Plateaub. Blue Mountain sectionc. Payette sectiond. Snake River Plaine. Harney section	CR WWP BMS PAS SRP HAS
		21. Colorado Plateaua. High Plateaus of Utahb. Uinta Basinc. Canyon Landsd. Navajo sectione. Grand Canyon sectionf. Datil section	CO HPU UIB CAL NAS GCS DAS
		22. Basin and Range Provincea. Great Basinb. Sonoran Desertc. Salton Troughd. Mexican Highlande. Sacramento section	BP GRB SOD SAT MEH SAS

This division includes portions of Alaska (see "Alaskan Physiographic Areas")

Pacific Mountain	PM	23. Cascade-Sierra Mountainsa. Northern Cascade Mtns.b. Middle Cascade Mtns.c. Southern Cascade Mtns.d. Sierra Nevada	CM NCM MCM SCM SIN
		24. Pacific Border Province a. Puget Trough b. Olympic Mountains c. Oregon Coast Range d. Klamath Mountains e. California Trough f. California Coast Ranges g. Los Angeles Ranges	PB PUT OLM OCR KLM CAT CCR LAR
		25. Lower California Province	LC

This division includes portions of Alaska (see "Alaskan Physiographic Areas")

Alaskan Physiographic Areas (Warhaftig, 1965)

The following Alaskan-Peninsula physiographic areas are extensions of the preceding North American Physiographic Divisions (e.g., Rocky Mountain System). These Alaskan extensions are presented separately, rather than intermingled with the previous Division / Province lists because they:
a) constitute a geographically coherent package (Wahrhaftig, 1965); b) these extensions were not contained within Fennman's original work which dealt only with the conterminous U.S. (Fenneman, 1931; 1938; & 1946); and c) Wahrhaftig's map-unit numbers are independent of, and inconsistent with Fenneman's. Wahrhaftig's original map unit scheme and numbers are retained here for simplicity in using his map of the Alaskan peninsula. *CAUTION:* Wahrhaftig's map unit numbers should not be confused with similar map unit numbers from Fenneman's map for the conterminous U.S.

Interior Plains	IN	 Arctic Coastal Plain Province 	_
		 a. Teshekpuk Hills section 	_
		 b. White Hills section 	_
		2. Arctic Foothills Province	AF
		 a. Northern Section 	_
		b. Southern Section	_

		Arctic Mountains Province 3. Delong Mountains section 4. Noatak Lowlands section 5. Baird Mountains section 6. Central & E. Brooks Range sect. 7. Ambler-Chandalar Ridge & Lowland sect. ing sequence shown here is from Wahrhaftig and not consistent with, that of Fenneman.	- - -
Intermontane Plateaus	IP	Northern Plateaus Province 8. Porcupine Plateau section a. Thazzik Mountain 9. Old Crow Plain section (noted but not described) 10. Olgivie Mountains section 11. Tintina Valley (Eagle Trough) sect. 12. Yukon-Tanana Upland section a. Western Part b. Eastern Part 13. Northway - Tanacross Lowland sect. 14. Yukon Flats section 15. Rampart Trough section 16. Kokrine - Hodzana Highlands sect. a. Ray Mountains b. Kokrine Mountains	- - - -
		Western Alaska Province 17. Kanuti Flats section 18. Tozitna - Melozitna Lowland sect. 19. Indian River Upland section 20. Pah River Section a. Lockwood Hills b. Pah River Flats c. Zane Hills d. Purcell Mountains 21. Koyukuk Flats section 22. Kobuk-Selawik Lowland section a. Waring Mountains 23. Selawik Hills section 24. Buckland River Lowland section 25. Nulato Hills section 26. Tanana - Kuskowin Lowland sect. 27. Nowitna Lowland section 28. Kuskokwim Mountains section 29. Innoko Lowlands section 30. Nushagak - Big River Hills section 31. Holitna Lowland section	

 Nushagak-Bristol Bay Lowland s Seward Peninsula Province 	ect. — SEP
a. Bendeleben Mountains	
 b. Kigluaik Mountains 	
c. York Mountains	
Bering Shelf Province	BES
34. Yukon- Kuskokwim Coastal	
Lowland sect.	_
 a. Norton Bay Lowland 	
35. Bering Platform section	_
a. St. Lawrence Island	
b. Pribilof Island	
c. St. Matthew Island	
d. Nunivak Island	
36. Ahklun Mountains Province	_

NOTE: The map-unit numbering sequence shown here is from Wahrhaftig (1965), and is independent of, and not consistent with, that of Fenneman.

(1965), and is indep	pendent of, a	and not consistent with, that of Fennen	nan.
Pacific Mountain System	PM	Alaska - Aleutian Province 37. Aleutian Islands section 38. Aleutian Range section 39. Alaska Range (Southern Part) se 40. Alaska Range (Central &	AAC —— ect.— — nent — tt. —
		 a. Eastern Part b. Western Part: Lake Louis Plat 49. Wrangell Mountains section 50. Duke Depression (not described) 51. Chatham Trough section 52. Kupreanof Lowland section 	_

!	53. 54. 55.	ific Border Ranges Province Kodiak Mountains section Kenai - Chugach Mountains sect St Elias Mountains section a. Fairweather Range subsection Gulf of Alaska Coastal section Chilkat - Baranof Mountains sect a. Alsek Ranges subsection b. Glacier Bay subsection c. Chichagof Highland subsectio	n 	PBS — — — — — —
ļ	58.	d. Baranof Mountains subsection Prince of Whales Mountains section	-	_
ļ	59.	ast Mountains Province Boundary Pass section Coastal Foothills section	C	ОМ — —
r F	hv	siographic Areas		

Other Physiographic Areas (not addressed by Fenneman, 1946; or Wahrhaftig, 1965)

Pacific Rim	PR	Pacific Islands Province	PI
		a. Hawaiian Islands	HAI
		b. Guam	GUM
		c. Trust Territories *	TRT
		(e.g., Commonwealth of the	
		Northern Mariana Islands,	
		Federated States of	
		Micronesia, Palau, Republic	
		of Marshall Islands, American	ı
		Samoa, etc.)	
		d. Other	

Most of the former U.S. Trust Territories of the Pacific are now independent nations. This designation is used here solely for brevity and to aid in accessing archived, historical data.

Caribbean Basin	СВ	Caribbean Islands Province a. Greater Antilles (Puerto Rico, Cuba, Hispaniola, Jamaica) b. Lesser Antilles (U.S. Virgin Is. Barbados, Grenada, Martinique, etc.) c. Other	CI GRA , LEA
Undesignated	UN	Other	ОТ

(reserved for temporary, or international designations)

STATE PHYSIOGRAPHIC AREA (D)

e.g. Des Moines Lobe (IA).

(OPTIONAL) (Entries presently undefined; to be developed

in conjunction with each State Geological Survey; target scale is approximately

1:100,000).

LOCAL PHYSIOGRAPHIC / GEOGRAPHIC NAME (E)

e.g. Pilot's Knob (IA).

(OPTIONAL) (Entries presently undefined; to be developed

in conjunction with each State Geological Survey; may include area names found on USGS 7.5 & 15 minute topographic maps; target scale is approximately 1:24,000.)

PART II: GEOMORPHIC DESCRIPTION (OUTLINE)

- I) COMPREHENSIVE LISTS:
 - A) LANDSCAPES
 - B) LANDFORMS

Water Bodies

- C) MICROFEATURES
- D) ANTHROPOGENIC FEATURES

II) GEOMORPHIC ENVIRONMENTS and OTHER GROUPINGS:

Landscape, Landform, and Microfeature Terms grouped by Geomorphic Process (e.g. Fluvial) or by common settings (e.g. Water Bodies). These lists are <u>not</u> mutually exclusive; some features occur in more than one environment or setting (e.g. *hill*).

 Coastal Marine and Estuarine 2. Lacustrine 3 Fluvial 4. Solution 5. Folian **GEOMORPHIC** 6. Glacial **ENVIRONMENTS** 7. Periglacial 8. Mass Movement 9. Volcanic and Hydrothermal 10. Tectonic and Structural 11. Slope 12. Erosional **OTHER** 13. Depressional **GROUPINGS** 14. Wetlands

PART II: GEOMORPHIC DESCRIPTION

Codes: Conventionally, the entire land-feature term is used (e.g. *dune field*). Some data storage programs (e.g. PEDON, NASIS) may have shorthand codes developed for some terms. An italicized code follows each term, if available (e.g. meander belt *MB*); shown for historical purposes.

I) COMPREHENSIVE LISTS:

A) LANDSCAPES (broad assemblages or unique groups of natural, spatially associated features). (LF = Landform)

alluvial plain	_	lava plain (also LF)	_
alluvial plain remnant	_	lava plateau (also ĹF)	LL
badlands	BA	lowland	_
bajada (also LF)	BJ	marine terrace (also LF)	_
barrier island (also LF)	_	meander belt	MB
basin	BS	mountain range	_
batholith	_	mountains (singular = LF)	MO
bolson	BO	mountain system	_
breaks	BK	outwash plain (also LF)	_
canyonlands	_	peninsula `	_
coastal plain (also LF)	CP	piedmont	PI
cockpit karst	_	piedmont slope	_
continental glacier	_	plains (also LF)	PL
delta plain (also LF)	_	plateau (also LF)	PT
drumlin field	_	rift valley	_
dune field	_	river valley (also LF)	RV
fan piedmont (also LF)	FP	sandhills	SH
fluviokarst	_	sand plain	_
fluviomarine terrace (also) LF) —	scabland	SC
foothills	FH	semi-bolson	SB
hills (singular = LF)	HI	shore complex	_
ice-margin complex	_	sinkhole karst	_
intermontane basin (also	LF) <i>IB</i>	tableland	TB
island (also LF)	_	thermokarst	ΤK
karst	KP	till plain (also LF)	TP
kegel karst	_	upland	UP
lake plain (also LF)	_	valley (also LF)	VA
lava field (also LF)	_	volcanic field (also LF)	_

B) LANDFORMS (discrete, natural, individual earth-surface features mappable at common survey scales). (LS = Landscape; Micro = Microfeature; w = water body. Italicized NASIS code follows each term.)

a'a lava flow	_		
alas	AA	bog	ВО
alluvial cone	_	box canyon	_
alluvial fan	AF	braided stream	BΖ
alluvial flat	AP	broad interstream divide	_
alpine glacier	_	butte	BU
anticline	AN	caldera	CD
arete	AR	canyon	CA
arroyo	AY	canyon bench	_
ash flow	AS	Carolina Bay	CB
atoll	AT	channel (also Micro)	CC
avalanche chute	AL	chenier `	CG
axial stream	_	chenier plain	СН
backshore	ΑZ	cinder cone	CI
backswamp	BS	cirque	CQ
bajada (also LS)	BJ	cirque floor	_
ballena	BL	cirque headwall	_
ballon	BV	cirque platform	_
bar <i>BR</i>		cliff	CJ
barchan dune	BQ	climbing dune	_
barrier beach	BB	closed depression	_
barrier flat	BP	(also Micro)	
barrier island (also LS)	BI	coastal plain (also LS)	CP
basin floor	BC	cockpit	_
basin-floor remnant	BD	col	CL
bay [coast] (w)	WB	collapsed ice-floored	CK
bay [geom.]	_	lakebed	
bayou (w)	WC	collapsed ice-walled	CN
beach	BE	lakebed	
beach plain	BP	collapsed lake plain	CS
beach ridge	BG	collapsed outwash plain	CT
beach terrace	BT	collapsed sinkhole	_
berm	BM	complex landslide	_
beveled base		coulee	CE
blind valley	VB	cove [coast] (w)	_
block field	BW	cove [geom.]	CO
block glide	_	craig and tail	_
block lava flow	_	crater (volcanic)	CR
block stream	BX	crevasse filling	CF
blowout	BY	cuesta	CU
bluff	BN	cuesta valley	_

cutoff	CV	fan skirt	FI
debris avalanche	DA	fault-line scarp	FK
debris fall	_	fault zone	_
debris flow	DF	fen	FN
debris slide	_	fissure vent	_
debris spread	_	fjord (w)	FJ
debris topple	_	flat	FL
deflation basin	DB	flood plain	FP
delta	DE	flood-plain playa	FY
delta plain (also LS)	DC	flood-plain splay	FM
depression	DP	flood-plain step	FO
diapir	DD	flow	_
dike	DK	flute (also Micro)	FU
dipslope	DL	fluviomarine terrace (also	
disintegration moraine	DM	fold	FQ
divide	DN	foredune	FD
dome	DN DO	fosse	FV
	DQ	free face	FW
drainageway draw	DQ DW		GA
drumlin	DW DR	gap	GA
	DK	geyser	_
drumlinoid ridge	_	geyser basin	_
dune	DU	geyser cone	_
dune lake (w)	_	giant ripple	GC
dune slack (also Micro)	_	glacial drainage channel	GD
earth flow	EF	glacial lake (w)	WE
earth spread	_	glacial lake (relict)	GL
earth topple		glacial-valley floor	_
end moraine	EM	glacial-valley wall	_
ephemeral stream	_	glacier	_
(also Micro)		gorge	GO
eroded fan remnant	_	graben	GR
eroded fan-remnant	_	ground moraine	GM
side slope		gulch	GT
erosion remnant	ER	gulf [coast]; (w)	_
escarpment	ES	gut (stream); (w)	WH
esker	EK	gut (valley)	GV
estuary (w)	WD	hanging valley	HV
faceted spur	FS	headland	HE
fall	FB	head-of-outwash	_
falling dune	_	headwall	HW
fan	FC	high hill	_
fan apron	FA	highmoor bog	HB
fan collar	_	hill	ΗI
fanhead trench	FF	hillslope	_
fan piedmont (also LS)	FG	hogback	НО
fan remnant	FH	horn	HR
ian ionnant		110/11	,,,,

horst	HT	loess bluff	LO
hot spring	_	loess hill	LQ
ice-contact slope	_	longitudnal dune	_
ice-marginal stream	_	longshore bar [relict]	LR
ice-pushed ridge	_	louderback	LU
inselberg	IN	low hill	_
inset fan	I F	lowmoor bog	LX
interdrumlin	_	maar	_
interdune (also Micro)	I D	main scarp (also Micro)	_
interfluve (also Geom.		marine terrace (also LS)	ΜT
Component - Hills)	IV	marsh	MA
interior valley	_	mawae	_
intermittent stream	_	meander	MB
(also Micro)		meandering channel	MC
intermontane basin	I B	meander scar	MS
(also LS)		meander scroll	MG
island (also LS)	_	medial moraine	MH
kame	KA	mesa	ME
kame moraine	KM	meteorite crater	_
kame terrace	KT	mogote	_
karst cone	_	monadnock	MD
karst tower	_	monocline	MJ
karst valley	_	moraine	MÜ
kettle	KE	mountain (plural = LS)	MM
kipuka	_	mountain slope	MN
knob	KN	mountain valley	MV
knoll	KL	mud flat	MF
lagoon (w)	WI	mudflow	MW
lahar `´	LA	mud pot	_
lake (w)	WJ	muskeg	MX
lakebed (relict)	LB	natural levee	NL
lake plain (also LS)	LP	neck [volcanic]	_
lakeshore `	LF	notch	NO
lake terrace	LT	nunatak	NÜ
landslide	LK	ocean	_
lateral moraine	LM	open depression (also Micr	0) —
lateral spread	_	outwash delta	_
lava field (also LS)	_	outwash fan	OF
lava flow	LC	outwash plain (also LS)	OP
lava flow unit (also Micro)	_	outwash terrace	OT
lava plain (also LS)	LN	overflow stream (channel)	_
lava plateau (also LS)	LL	oxbow	OX
lava trench (also Micro)	_	oxbow lake (w)	WK
lava tube	_	oxbow lake (ephemeral)	OL
ledge	LE	paha	PA
levee [stream]	LV	pahoehoe lava flow	_
[pa	

paleoterrace	_	rim	RJ
parabolic dune	PB	rise	_
parna dune	PD	river (w)	_
partial ballena	PF	river valley (also LS)	_
patterned ground	PG	roche moutonnee (also Mic	ro)RN
pavement karst	_	rock fall (also Micro)	
peak	PK	rock fall avalanche	_
peat plateau	PĴ	rock glacier	RO
pediment	PE	rock pediment	_
perennial stream (w)	, _	rock spread	
pillow lava flow	_	rock topple	_
	_	rotational debris slide	_
pinnacle	— D <i>T</i>		
pingo	PI	rotational earth slide	_
pitted outwash plain	PM	rotational rock slide	_
pitted outwash terrace	_	rotational slide	RP
plain (also LS)	PN	saddle	SA
plateau (also LS)	PT	sag (also Micro)	_
playa	PL	sag pond (w; also Micro)	_
playa dune (also Micro)	_	salt marsh	SM
playa floor (also Micro)	_	salt pond (w; also Micro)	WQ
playa lake (w)	WL	sand flow	RW
playa rim (also Micro)	_	sand ramp	_
playa slope (also Micro)	_	sand sheet	RX
playa step (also Micro)	_	scarp	RY
plug [volcanic]	_	scarp slope	RS
plug dome	PP	scree slope	_
pluvial lake (w)	WM	sea (w)	_
pluvial lake (relict)	PQ	sea cliff	RZ
pocosin	PO	seif dune	SD
point bar	PR	shield volcano	_
pothole (also Micro)	PH	shoal (w)	WR
pothole lake (w)	WN	shoal (relict)	SE
pressure ridge [ice]	_	shore `	_
pressure ridge [volc]	PU	sill	RT
proglacial lake (w)	WO	sinkhole	SH
proglacial lake (relict)	_	slackwater (w)	WS
pyroclastic flow	_	slide	SJ
pyroclastic surge	_	slot canyon	_
raised beach	RA	slough (ephemeral water)	SL
raised bog	RB	slough (permanent water)	WU
ravine	RV	slump	SK
recessional moraine	RM	slump block	SN
reef	RF	snowfield	OIV
reworked lake plain	Π	soil fall	_
ribbed fen	RG	solution sinkhole	_
	RI		_
ridge	KI	sound (w)	_

spit SP spur	SQ	(also Micro) tombolo	то
stack [coast]	JQ	topple	10
stack [geom.]	SR	tor	TQ
star dune	- ON	translational debris slide	70
steptoe	ST	translational earth slide	
stock	_	translational rock slide	_
stoss and lee	_	translational slide	TS
strait (w)	_	transverse dune	TD
strand plain	SS	trough	TR
strath terrace	SU	tunnel valley	TV
stratovolcano	SV	tunnel-valley lake (w)	_
stream (w)	_	underfit stream	_
stream terrace	SX	U-shaped valley	UV
strike valley	_	valley	VA
string bog	SY	valley border surfaces	_
structural bench	SB	valley flat	VF
submerged-upland tidal	_	valley floor	VL
marsh		valley side	VS
swale (also Micro)	SC	valley train	VT
swallow hole	TB	volcanic cone	VC
swamp	SW	volcanic dome	VD
syncline	SZ	volcanic field (also LS)	_
talus cone	_	volcano	VO
talus slope	_	V-shaped valley	VV
tarn (w; also Micro)		wash	WA
terminal moraine	<u>TA</u>	washover fan	WF
terrace	TE	wave-built terrace	WT
thermokarst depression	TK	wave-cut platform	WP
thermokarst lake (w)	WV	wind gap	WG
tidal flat	TF	yardang (also Micro)	_
tidal marsh	_	yardang trough (also Micro)	_
till-floored lake plain	— TP		
till plain (also LS)	1P		
toe [mass move.];	_		

C) MICROFEATURES (discrete, natural earth-surface features typically too small to delineate at common survey scales).

bar channel (also LF) closed depression (also LF) corda cutter dune slack (also LF) earth pillar ephemeral stream (also LF) finger ridge flute (also LF) frost boil groove gully hillock hoodoo Periglacial "pattern		interdune (also LF) intermittent stream (w; also LF) karren lava flow unit (also LF) lava trench (also LF) main scarp (also Micro) minor scarp mound nivation hollow open depression (also LF) patterned ground microfeatur (see below; used in association with the landi "patterned ground"(PG)) "Microfeatures:	form
circle earth hummocks high-center polygons ice wedge polygons low-center polygons non-sorted circles		palsa, palsen (= peat hummocks) polygons sorted circles stripes— turf hummocks	_ _ _
b) Other "patterned gro	ound" Micro	ofeatures:	
bar and channel circular gilgai elliptical gilgai gilgai	_ _ _ G	hummocks linear gilgai mima mounds pimple mounds	_ _ _
perennial stream (also LF) pinnacle playa dune (also LF) playa floor (also LF) playa rim (also LF) playa slope (also LF)		playa step (also LF) pond (w) pool (w) pothole (also LF) pressure ridge [volc.] rib	

(continued)

MICROFEATURES (continued)

rill	_	spiracle	_
ripple mark	_	strandline	_
rouche moutonnee	_	swale (also LF)	_
(also LF)		swash zone	_
sag (also LF)	_	tank (w)	_
sag pond (w; also LF)	_	tarn (w; also LF)	_
salt pond (w; also LF)	_	terracettes	Τ
sand boil	_	toe [mass move.] (also LF)	_
scour (mark)	_	tree-tip mound	_
shoreline	_	tree-tip pit	_
shrub-coppice dune	SG	truncated soil	_
slip face	_	tumulus (tumuli; = pl)	_
solifluction lobe	_	vernal pool (seasonal	_
solifluction sheet	_	water)	
solifluction terrace	_	yardang (also LF)	_
solution corridor	_	yardang trough (also LF)	_
solution fissure	_	zibar	_
spatter cone	_		

D) ANTHROPOGENIC FEATURES [discrete, artificial (human-made), earth-surface features].

artificial collapsed depression	G	pond (human-made)	_
artificial levee	Α	quarry	_
beveled cut	_	railroad bed	D
borrow pit	_	reclaimed land	_
burial mound	В	rice paddy	Ε
cut (road, railroad)	_	road bed	I
cutbank	_	sand pit	_
ditch	_	sanitary landfill	_
dump	_	scalped area	_
fill	_	sewage lagoon	_
floodway	_	skid trail	—
gravel pit	_	spoil bank	—
impact crater	_	spoil pile	_
landfill (see sanitary landfill)	_	surface mine	—
leveled land	_	tillage / management	F
log landing	_	features	
midden	Н	(see below for specific types)	
openpit mine	_		

Tillage / management features (common types):

image / management reatu	res (common t	урсэ).	
conservation terrace (modern) double-bedding mound (i.e., bedding mound	_ _	drainage ditch furrow hillslope terrace (e.g., archeological	_ _ _
used for timber; lower Coastal Plain)		features; China, Peru) inter-furrow	_
truncated soil urban land	_		

II) GEOMORPHIC ENVIRONMENTS or OTHER GROUPINGS

(Landscape, Landform, and Microfeature terms grouped by geomorphic process (e.g. Fluvial) or by common setting (e.g. Water Body). LS = Landscape; LF = Landform; Micro = Microfeature

1. COASTAL MARINE and ESTUARINE

Landscapes:

barrier island (also LF) coastal plain (also LF)	— CP	lowland marine terrace (also LF)	_
fluviomarine terrace	_	peninsula	_
(also LF) island (also LF)	_	shore complex	_

Landforms:

atoll	ΑT	island (also LS)	_
backshore	AZ	lagoon [relict]	WI
bar	BR	longshore bar [relict]	LR
barrier beach	BB	marine terrace (also LS)	MT
barrier flat	BF	mud flat	MF
barrier island (also LS)	BI	raised beach	RA
beach	BE	reef	RF
beach plain	BP	salt marsh	SM
beach ridge	BG	sea cliff	RΖ
beach terrace	BT	shoal (relict)	SE
berm	BM	shore	_
bluff	BN	spit	SP
chenier	CG	stack [coast]	_
chenier plain	СН	strand plain	SS
coastal plain	CP	submerged-upland tidal	_
delta	DE	marsh	
delta plain (also LS)	DC	tidal flat	TF
flat	FL	tidal marsh	_
foredune	FD	tombolo	TO
fluviomarine terrace	_	washover fan	WF
(also LS)		wave-built terrace	WT
headland	HE	wave-cut platform	WP

Microfeatures:

	swash zone	_
ripple mark	_	
shoreline	_	

USDA-NRCS 3-20 September 2002

2. LACUSTRINE (related to inland water bodies).

Landscapes:

island (also LF)	_	peninsula	_
lake plain (also LF)	_	shore complex	_

Landforms:

backshore	AZ	lake terrace	LT
backshore	BR		LR
barrier beach	BR BB	longshore bar [relict]	
		mud flat	MF
barrier flat	BF	oxbow lake (ephemeral)	OL
barrier island	BI	playa	PL
beach	BE	playa floor (also Micro)	_
beach plain	BP	playa rim (also Micro)	_
beach ridge	BG	playa slope (also Micro)	_
beach terrace	ВТ	playa step (also Micro)	_
berm	BM	pluvial lake (relict)	PQ
bluff	BN	raised beach	RA
delta	DE	reworked lake plain	_
delta plain (also LS)	DC	salt marsh	SM
flat	FL	shoal (relict)	SE
flood-plain playa	FY	shore `	_
foredune	FD	spit	SP
headland	HE	stack [coast]	_
island (also LS)	_	strand plain	SS
lagoon [relict]	WI	till-floored lake plain	_
lakebed [relict]	LB	tombolo	TO
lakebed (water body)	LB	wave-built terrace	WT
lake plain (also LS)	LP	wave-cut platform	WP

Microfeatures:

bar	_	ripple mark	_
playa floor (also LF)	_	shoreline	_
playa rim (also LF)	_	strandline	_
playa slope (also LF)	_	swash zone	_
playa step (also LF)	_	vernal pool	_

3. FLUVIAL (Dominantly related to concentrated water flow (channel flow); includes both erosional and depositional features, but excluding glaciofluvial landforms (see *Glacial*), and permanent water features (e.g., river; see *Water Bodies*).

Landscapes:

alluvial plain	_	delta plain	_
alluvial plain remnant	_	fan piedmont	FP
badlands	BA	meander belt	MP
bajada	BJ	river valley	_
breaks	BK	scabland	SC
canyonlands	_		

Landforms:

alluvial cone	_	flood-plain playa	FY
alluvial fan	AF	flood-plain splay	FΜ
alluvial flat	AP	flood-plain step	FΟ
arroyo	AY	giant ripple	GC
axial stream (w)	_	gorge	GO
backswamp	BS	gulch	GT
bajada [.]	BJ	gut (valley)	GV
bar	BR	inset fan	IF
basin-floor remnant	BD	intermittent stream	_
block stream	BX	(also Micro)	
box canyon	_	levee [stream]	LV
braided stream	BZ	meander scar	MS
canyon	CA	meander scroll	MG
channel	CC	natural levee	NL
coulee	CE	overflow stream channel	_
cutoff	CV	oxbow	OX
delta	DE	oxbow lake (ephemeral)	OL
delta plain (also LS)	DC	paleoterrace	_
drainageway	DQ	point bar	PR
draw	DW	ravine	RV
ephemeral stream	_	river valley (also LS)	_
(also Micro)		slot canyon	_
fan apron	_	strath terrace	SU
fan collar	_	stream terrace	SX
fanhead trench	FF	valley border surfaces	_
fan remnant	_	valley flat	VF
fan skirt	FI	wash	WA
flood plain	FP	wind gap	WG

FLUVIAL (continued)

bar	_	gully	_
bar and channel	_	intermittent stream (also LF)	_
channel	_	ripple mark	_
ephemeral stream (also LF)	_	swash zone	_
groove	_		

4. SOLUTION (dominated by dissolution, and commonly, subsurface drainage).

Landscapes:

cockpit karst	_	kegel karst	_
fluviokarst	_	sinkhole karst	_
karst	_	thermokarst	TK

Landforms:

VB	pinnacle	_
_	sinkhole	SH
_	solution sinkhole	_
	swallow hole	ΤB
_	thermokarst depression	ΤK
_	(also Micro)	
_	yardang (also Micro)	_
_	yardang trough (also Micro)	_
_		
	VB	 sinkhole solution sinkhole swallow hole thermokarst depression (also Micro) yardang (also Micro)

_	thermokarst depression	_
_	(also LF)	
_	yardang (also LF)	_
_	yardang trough (also LF)	_
		— (also LF) — yardang (also LF)

5. EOLIAN (dominantly wind related, erosion or deposition).

Landscapes:

dune field —	_	sand plain	_
sand hills	SH	•	

Landforms:

barchan dune	BQ	paha	PA
blowout	BY	parabolic dune	PΒ
climbing dune	_	parna dune	PD
deflation basin	DB	playa dune (also Micro)	_
dune	DU	sand ramp	_
dune lake (w)	_	sand sheet	RX
dune slack (also Micro)	_	seif dune	SD
falling dune	_	star dune	_
foredune	FD	transverse dune	TD
interdune	I D	yardang (also Micro)	_
loess bluff	LO	yardang trough (also Micro)	
loess hill	LQ		
longitudinal dune	_		

dune slack (also LF)	_	slip face (also LF)	_
interdune (also LF)	_	yardang (also LF)	_
playa dune (also LF)	_	yardang trough (also LF)	_
shrub-coppice dune (also LF)	_	zibar	_

6. GLACIAL (directly related to glaciers; includes glaciofluvial glaciolacustrine, glaciomarine and outwash features)

Landscapes:

continental glacier	_	ice-margin complex	_
drumlin field	_	outwash plain (also LF)	_
hills	HI	till plain (also LF)	_

Landforms:

alpine glacier	_	head-of-outwash	_
arete	AR	ice-contact slope	
cirque	CQ	ice-marginal stream (w)	_
cirque floor	_	ice-pushed ridge	_
cirque headwall	_	interdrumlin	_
cirque platform	_	kame	KA
col	CL	kame moraine	KM
collapsed ice-floored lakel	bed <i>CK</i>	kame terrace	KT
collapsed ice-walled lakel	ed CN	kettle	KE
collapsed lake plain	CS	lateral moraine	LM
collapsed outwash plain	CT	medial moraine	MH
crag and tail	_	moraine	MU
crevasse filling	CF	nunatak	NU
disintegration moraine	DM	outwash delta	_
drumlin	DR	outwash fan	OF
drumlinoid ridge	_	outwash plain (also LS)	OP
end moraine	EM	outwash terrace	OT
esker	EK	paha	PA
fjord (w)	FJ	pitted outwash plain	PM
flute (also Micro)	FU	pitted outwash terrace	_
fosse	FV	pothole (also Micro)	_
giant ripple	GC	pressure ridge [ice]	_
glacial drainage channel	GD	proglacial lake [relict]	_
glacial lake (relict)	GL	proglacial lake (w)	_
glacial lake (w)	_	recessional moraine	RM
glacial-valley floor	_	reworked lake plain	_
glacial-valley wall	_	roche moutonnee (also Mi	cro) <i>RN</i>
glacier	_	rock glacier	RO
ground moraine	GM	snowfield	_
hanging valley	HV	stoss and lee	_

(continued)

GLACIAL (continued)

tarn (w; also Micro)	_	tunnel-valley lake (w)	_
terminal moraine	TA	underfit stream	_
till-flooded lake plain	_	U - shaped valley	UV
till plain (also LS)	TP	valley train	VT
tunnel vallev	TV	•	

flute (also LF)	_	rouche moutonnee (also LF	·) —
nivation hollow	_	swale (also LF)	_
pothole (also LF)	_	tarn (w; also LF)	_

7. PERIGLACIAL [related to non-glacial, cold climate (modern, or relict), including periglacial forms of patterned ground)]. Note: Consider "patterned ground" as a Landform, but treat specific types of patterned ground (singular or plural), as Microfeatures.

Landscapes:

coastal plain	CP	plains	PL
hills	$Holdsymbol{I}$	thermokarst	TK

Landforms:

alas	AA	peat plateau	PJ
block field	BW	pingo	PI
muskeg	MX	rock glacier	RO
patterned ground	PG	string bog	SY
(see Microfeatures		thermokarst depression	TK
below for types)		thermokarst lake (w)	_

circle	_	polygon	_
earth hummock	_	solifluction lobe	_
frost boil	_	solifluction sheet	_
high-center polygon	_	solifluction terrace	_
ice-wedge	_	sorted stripes	_
low-center polygon	_	stripes	_
nivation hollow	_	turf hummocks	_
non-sorted circle	_		
palsa (palsen = plural;	_		
= peat hummock)			

8. MASS MOVEMENT (= MASS WASTING) (dominated by gravity; including creep forms; also see Mass Movement Types table, p. 5-7)

Landscapes: These generic Landscapes are not Mass Movement features per say, but are commonly modified by, and include localized areas of Mass Movement.

foothills	FH	mountain range	_
hills	$Holdsymbol{I}$	mountains	MO

Landforms:

avalanche chute	AL	rock glacier	RO
block glide	_	rock spread	_
block stream	BX	rock topple	_
complex landslide	_	rotational debris slide	_
debris avalanche	DA	rotational earth slide	_
debris fall	_	rotational rock slide	_
debris flow	DF	rotational slide	RP
debris slide	_	sag (also Micro)	_
debris spread	_	sag pond (w; also Micro)	_
debris topple	_	sand flow	RW
earth flow	EF	scree slope	_
earth spread	_	slide	SJ
earth topple	_	slump	SK
fall	FB	slump block	SN
flow	_	soil fall	_
lahar	LA	talus cone	_
landslide	LK	talus slope	_
lateral spread	_	topple	_
main scarp (also Micro)	_	translational debris slide	_
mudflow	MW	translational earth slide	_
rock fall (also Micro)	_	translational rock slide	_
rockfall avalanche	_	translational slide	TS

Microfeatures:

		sand boil	_
main scarp (also LF)	_	solifluction lobe	_
minor scarp	_	solifluction sheet	_
rock fall (also LF)	_	solifluction terrace	_
sag (also LF)	_	terracettes	Τ
sag pond (also LF)	_	toe [mass move.] (also LF)	_

USDA-NRCS 3-29 September 2002

9. VOLCANIC and HYDROTHERMAL

Landscapes:

foothills	FH	lava plateau (also LF)	_
hills	HI	mountains	MO
lava field (also LF)	_	volcanic field (also LF)	_
lava plain (also LF)	_		

Landforms:

a'a lava flow	_	louderback	LV
ash flow	AS	maar	_
block lava flow	_	mawae	_
caldera	CD	mud pot	_
cinder cone	CI	neck [volc.]	_
crater [volcanic]	CR	pahoehoe lava flow	_
fissure vent	_	pillow lava flow	_
geyser	_	plug [volc.]	_
geyser basin	_	plug dome	PP
geyser cone	_	pressure ridge [volc.]	PU
hot spring	_	(also Micro)	
kipuka	_	pyroclastic flow	_
lahar	LA	pyroclastic surge	_
lava field (also LS)	_	shield volcano	_
lava flow unit (also Micro)	_	step toe	_
lava flow	LC	stratovolcano	SV
lava plain (also LS)	LN	volcanic cone	VC
lava plateau (also LS)	LL	volcanic dome	VD
lava trench (also Micro)	_	volcanic field (also LS)	_
lava tube	_		

corda	_	spatter cone	_
lava flow unit (also LF)	_	spiracle	_
lava trench (also LF)	_	tumulus (tumuli: = plural)	_
pressure ridge [volc.]	_		
(also LF)			

10. TECTONIC and STRUCTURAL (related to regional or local bedrock structures or crustal movement; recognized only if expressed at or near the land surface).

Landscapes:

batholith	_	mountain system	_
bolson	ВО	plateau	PT
foothills	FH	rift valley	_
hills	$Holdsymbol{I}$	semi-bolson	SB
intermontane basin	I B	tableland	TB
mountain range	_	valley	VA
mountains	MO		

Landforms:

anticline	AN	graben	GR
canyon bench		hogback	НО
cuesta	CU	horst	HT
cuesta valley	_	louderback	LU
diapir	DD	meteorite crater	_
dike	DK	monocline	MJ
dipslope	DL	scarp slope	RS
dome	DO	sill	RT
fault-line scarp	FK	strike valley	_
fault zone	_	structural bench	SB
fold	FQ	syncline	SZ

Microfeatures:

sand boil -

11. SLOPE (Terms that tend to be generic and that emphasize their form rather than any particular genesis or process).

Landscapes:

badlands	BA	mountain system	_
breaks	BK	piedmont	PI
canyonlands	_	piedmont slope	_
foothills	FH	plateau (also LF)	PT
hills	HI	tableland	TB
mountain range		upland	UP
mountains	MO	•	

Landforms:

beveled base	_	low hill	_
block stream	BX	mesa	ME
bluff	BN	mountain (plural = LS)	MM
broad interstream divide	_	mountain slope	MN
butte	BU	mountain valley	MV
canyon bench	_	notch	NO
cliff	CJ	paha	PA
cuesta	CU	peak	PK
dome	DO	pediment	PE
escarpment	ES	plain (plural = LS)	PN
faceted spur	FS	plateau (also LS)	PT
fault-line scarp	FK	ridge	RI
free face	FW	rim	RJ
(also Geom. Compon	ent-	rock pediment	_
Hills, Mountains)		scarp	RY
gap	GA	scarp slope	RS
headwall	HW	scree slope	_
high hill	_	spur	SQ
hill (plural = LS)	HI	stack [geom.]	_
hillslope	_	structural bench	SB
hogback	НО	talus cone	_
interfluve (also Geom.	IV	talus slope	_
Component - Hills)		tor	TQ
knob	KN	valley	VA
knoll	KL	wind gap	WG
ledge	LE		

finger ridge	_	rib	_
mound	Μ	rill	_

12. EROSIONAL (Related dominantly to water erosion but excluding perennial channel flow (i.e. fluvial, glaciofluvial), or eolian erosion).

Landscapes:

badlands	BA	mountains	MO
breaks	BK	piedmont	PI
canyonlands	_	piedmont slope	_
foothills	FH	plateau (also LF)	PT
hills	HI	tableland	TB
mountain range	_		

Landforms:

ballena	BL	inselberg	IN
ballon	BV	monadnock	MD
basin floor remnant	BD	notch	NO
beveled base	_	paha	PA
canyon bench	_	partial ballena	PF
col	CL	peak	PK
cuesta	CU	pediment	PE
cuesta valley	_	plateau (also LS)	PT
eroded fan remnant	_	rock pediment	_
eroded fan-remnant	_	saddle	SA
sideslope		scarp slope	RS
erosion remnant	ER	stack [geom.]	SR
free face (also Geom.	FW	strike valley	_
Component-Hills,		structural bench	SB
Mountains)		tor	TQ
gap	GA	valley border surfaces	_
hogback	НО	wind gap	WG

earth pillar	_	pinnacle	_
finger ridge	_	rib	_
groove	_	rill	_
gully	_	swale	_
hoodoo	_		

13. DEPRESSIONAL (low area or declivity features, excluding permanent water bodies).

Landscapes:

basin	BS	semi-bolson	SB
bolson	ВО	valley	VA

Landforms:

alluvial flat	AP	mountain valley	MV
basin floor	BC	open depression	_
basin floor remnant	BD	playa	PL
box canyon	_	playa floor (also Micro)	_
canyon	CA	playa rim (also Micro)	_
Carolina Bay	CB	playa slope (also Micro)	_
closed depression	_	playa step (also Micro)	_
col	CL	pothole (also Micro)	PH
coulee	CE	ravine	RV
cove [geom.]	CO	saddle	SA
cuesta valley	_	sag (also Micro)	_
depression	DP	slot canyon	_
drainageway	DQ	strike valley	_
gap	GA	swale (also Micro)	SC
gorge	GO	trough	TR
gulch	GT	U-shaped valley	UV
gut (valley)	GV	valley	VA
intermontane basin	I B	valley floor	VL
kettle	KE	V-shaped valley	VV

closed depression (also LF)	_	playa step (also LF)	_
open depression (also LF)	_	pothole (also LF)	_
playa floor (also LF)	_	sag (also LF)	_
playa rim (also LF)	_	swale (also LF)	_
playa slope (also LF)	_	tree-tip pit	_

14. WETLANDS [Related to vegetated and/or shallow water areas, and wet soils. (Provisional list: conventional, geologic definitions; not legalistic or regulatory usage)]

Landscapes:

(no entries)

Landforms:

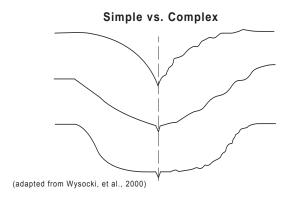
alas	AA	muskeg	ΜX
backswamp	BS	oxbow lake (ephemeral)	OL
bog	ВО	peat plateau	PJ
Carolina Bay	CB	playa (intermittent water)	PL
dune slack (also Micro)	_	pocosin	PO
ephemeral stream	_	pothole (intermittent water;	PH
(also Micro)		also Micro)	
estuary	WD	raised bog	RB
fen	FN	ribbed fen	RG
flood-plain playa	FY	salt marsh	SM
highmoor bog	HB	slough (intermittent water)	SL
intermittent stream	_	string bog	SY
(also Micro)		swamp	SW
lowmoor bog	LX	tidal flat	TF
marsh	MA	tidal marsh	_
mud flat	MF		

dune slack (also LF)	_	pothole (also <i>LF</i>)	_
ephemeral stream (also LF)	_	vernal pool	_
intermittent stream (also <i>LF</i>)	_	(seasonal water)	

15. WATER BODIES [Discrete "surface water" features; primarily permanent open water, which in Soil Survey Reports are commonly treated as the generic map unit "water" (e.g., lake), or as a spot / line symbol (e.g., perennial)].

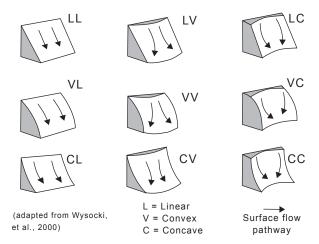
Landscapes:

(no entries)

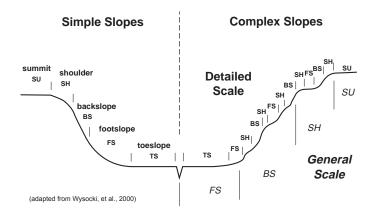

Landforms:

axial stream bay [coast] bayou cove [coast] dune lake estuary fjord glacial lake gulf [coast] gut (stream) ice-marginal stream lagoon lake ocean oxbow lake perennial stream	WB WC WD FJ WE WH WI WJ WK	playa lake pluvial lake pothole (lake; also Micro) proglacial lake river sag pond (also Micro) salt pond (also Micro) shoal slackwater slough (permanent water) sound strait stream tarn (also Micro) thermokarst lake	WL WM WN WO
perennial stream (also Micro)	_	tunnel-valley lake	_

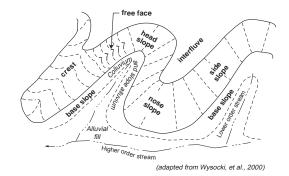
channel	_	sag pond (also LF)	_
perennial stream (also LF)	_	salt pond (also LF)	_
pond	_	tank	_
pool	_	tarn (also LF)	_
pothole (permanent water; also LF)	_		


PART III: SURFACE MORPHOMETRY

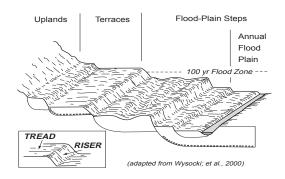
- A) **Elevation**: The height of a point on the Earth's surface, relative to mean sea level (msl); indicate units; e.g., 106 m or 348 ft.
- B) **Slope Aspect**: The compass bearing (in degrees, corrected for declination) that a slope faces, looking downslope. e.g., 287°
- C) Slope Gradient: The angle of the ground surface (in percent) through the site and in the direction that overland water would flow. (Commonly referred to as slope.) e.g., 18%
- D) Slope Complexity: Describe the relative uniformity (smooth linear or curvilinear = simple or S) or irregularity (complex or C) of the ground surface leading downslope through the point of interest; e.g., simple or S.


E) Slope Shape: Slope shape is described in two directions: 1) up and down slope (perpendicular (normal) to the contour); and 2) across slope (along the horizontal contour). In PDP, this data element is split into two sequential parts (Slope Across and Slope Up & Down); e.g., Linear, Convex, or LV.

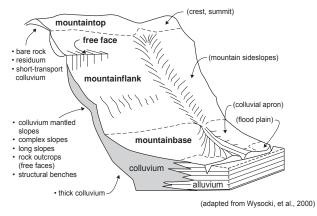
Down Slope	Across Slope	С	ode
(Vertical)	(Horizontal)	PDP 3.5	NASIS
concave	concave	CC, CC	CC
concave	convex	CC, CV	CV
concave	linear	CC, LL	CL
convex	concave	CV, CC	VC VC
convex	convex	CV, CV	VV
convex	linear	CV, LL	VL
linear	concave	LL, CC	LC
linear	convex	LL, CV	LV
linear	linear	LL, LL	LL

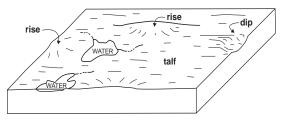

(F) Hillslope - Profile Position (Hillslope Position in PDP): Two-dimensional descriptors of parts of line segments (i.e., slope position) along a transect that runs up and down the slope; e.g., backslope or BS. This set of terms is best applied to transects or points, not areas.

Position	Code	
summit	SU	
shoulder	SH	
backslope	BS	
footslope	FS	
toeslope	TS	



G) Geomorphic Component (Geomorphic Position in PDP): Threedimensional descriptors of parts of landforms or microfeatures that are best applied to areas. Unique descriptors are available for Hills, Terraces, Mountains, and Flat Plains; e.g., (for Hills) nose slope or NS.

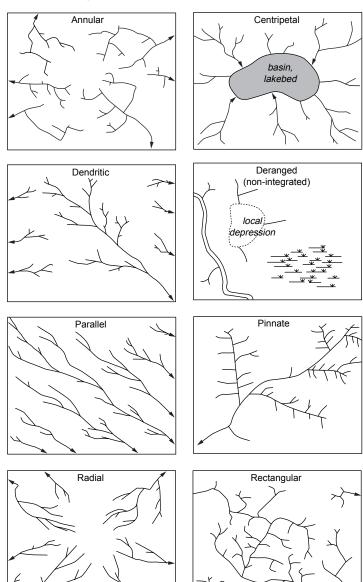

1) Hills	Code		
	PDP	NASIS	
interfluve	IF	IF	
crest	CT	CT	
head slope	HS	HS	
nose slope	NS	NS	
side slope	SS	SS	
free face	_	FF	
base slope	_	BS	


2) Terraces, Stepped Landforms	Code
riser	RI
tread	TR

3) Mountains	Code
mountaintop	MT
mountainflank	MF
upper third - mountainflank	UT
center third - mountainflank	CT
lower third - mountainflank	LT
free face	FF
mountainbase	MB

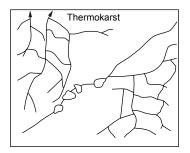
4) Flat Plains	Code
dip	DP
rise	RI
talf	TF

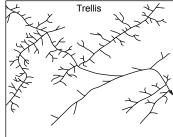
(adapted from Wysocki, et al., 2000)


- very low gradients (e.g. slope 0-1%)
- · deranged, non-integrated, or incipient drainage network
- "high areas" are broad and low (e.g. slope 1-3%)
- · Sediments commonly lacustrine, alluvial, eolian, or till
- Microrelief: Small, relative differences in elevation between adjacent areas on the earth's surface; e.g., micro-high or MH; or micro-low or ML.

NOTE: Microrelief **Kind** and **Pattern** have been deleted from PDP (obsolete); these phenomena and terms are now indirectly captured within the data element "Microfeature".

 Drainage Pattern: The arrangement of drainage channels on the land surface; also called drainage network.


Drainage Pattern	Codes
annular	_
artificial	_
centripetal	_
dendritic	_
deranged	_
karst	_
parallel	_
pinnate	_
radial	_
rectangular	_
thermokarst	_
trellis	_


Common Drainage Patterns:

USDA-NRCS 3-42 September 2002

Common Drainage Patterns: (continued)

- Fenneman, N.M. 1931. Physiography of the western United States. Mcgraw-Hill Co., New York, NY. 534 p.
- Fenneman, N.M. 1938. Physiography of the eastern United States. Mcgraw-Hill Co., New York, NY. 714 p.
- Fenneman, N.M. 1946 (reprinted 1957). Physical divisions of the United States. U.S. Geological Survey, U.S. Gov. Print. Office, Washington, D.C. 1 sheet; 1:7,000,000.
- Ruhe, R.V. 1975. Geomorphology: Geomorphic processes and surficial geology. Houghton-Mifflin, Boston, MA. 246 p.
- Schoeneberger, P.J. and D.A. Wysocki, 1996. Geomorphic descriptors for landforms and geomorphic components: effective models and weaknesses. *In:* Agronomy abstracts, American Society of Agronomy, Madison, WI. 273 p.
- Soil Survey Staff. 2002. Glossary of landforms and geologic materials. Part 629, National Soil Survey Handbook, USDA, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.
- Wahrhaftig, C. 1965. Physiographic divisions of Alaska. U.S. Geological Survey Professional Paper 482; 52p.
- Wysocki, D.A., P.J. Schoeneberger, and H.E. La Garry. 2000. Geomorphology of Soil Landscapes. *In:* Sumner, M.E. (ed.). 2000. Handbook of Soil Science. CRC Press LLC, Boca Raton, FL. ISBN:0-8493-3136-6

SOIL TAXONOMY

INTRODUCTION

The purpose of this section is to expand upon and augment the abbreviated soil taxonomic contents of the "Soil Profile Description Section."

HORIZON NOMENCLATURE

MASTER AND TRANSITIONAL HORIZONS -

Horizon	Criteria ¹
0	Organic soil materials other than limnic materials. The mineral fraction is commonly a small percent by volume and is less than 80% by weight.
A	Mineral soil, formed at surface or below O, little remnant rock structure, and both or either: 1) accumulation of humified organic matter but dominated by mineral matter, and not E or B; or 2) cultivation properties. Excludes recent eolian or alluvial deposits that retain stratification.
AB (or AE)	Dominantly A horizon characteristics but also has some recognizable characteristics of B (or E) horizon.
A/B (or A/E) (or A/C)	Discrete, intermingled bodies of two horizons: A and B (or E,or C) material; majority of layer is A material.
AC	Dominantly A horizon characteristics but also has some recognizable characteristics of C horizon.
E	Mineral soil, loss of clay, iron, aluminum, and/or organic matter leaving a net concentration of sand and silt; little remnant rock structure; typically lighter color (higher value, chroma) and coarser texture than A.
EA (or EB, or EC)	Dominantly E horizon characteristics but also has some recognizable characteristics of A (or B, or C) horizon.
E/A (or E/B)	Discrete, intermingled bodies of two horizons: E and A (or E and B) material; majority of layer is E horizon material.
E and Bt (or B and E)	Presence of thin, heavier textured lamellae (Bt) within a predominantly E horizon with less clay (or thin E layers within a predominantly B horizon).
BA (or BE)	Dominantly B characteristics but also has some recognizable attributes of A (or E) horizon.

B/A (or B/E)	Discrete, intermingled bodies of two horizons, majority of horizon is B (or E) material.
В	 Mineral soil, typically formed below O, A, or E; little or no rock structure; and one or more of the following: 1) illuvial accumulation of silicate clay, Fe, Al, humus, carbonate, gypsum, silica, or salt more soluble than gypsum (one or more); 2) removal of carbonates, gypsum or more soluble salts; 3) residual accumulation of sesquioxides; 4) sesquioxide coatings; 5) alterations that form silicate clays or liberates oxides and forms pedogenic structure; 6) Strong gleying in the presence of aquic conditions (or artificial drainage); Layers with gleying, but no other pedogenic change are not B horizons. Most B horizons are or were subsurface horizons.
	Some formed at the surface by accumulation of evaporites. Cemented and brittle layers that have other evidence of pedogenesis are included as B horizons.
ВС	Dominantly B horizon characteristics but also has some recognizable characteristics of the C horizon.
B/C	Discrete, intermingled bodies of two horizons; majority of horizon is B material.
CB (or CA)	Dominantly C horizon characteristics but also has some recognizable characteristics of the B (or A) horizon.
C/B (or C/A)	Discrete, intermingled bodies of two horizons; majority of horizon is C material.
С	Mineral soil, soft bedrock (excluding <i>Strongly Cemented</i> to <i>Indurated</i> bedrock unless highly cracked); layer little affected by pedogenesis and lack properties of O, A, E, or B horizons. May or may not be related to parent material of the solum.
L	Limnic soil materials ² . Sediments deposited in a body of water (subaqueous) and dominated by organic materials (aquatic plant and animal fragments and fecal material) and lesser amounts of clay.
W	A layer of liquid water (W) or permanently frozen ice (Wf) within the soil (excludes water / ice above soil). ²
R	Hard bedrock (continuous, coherent <i>Strongly Cemented</i> to <i>Indurated</i> Cementation Classes).

¹ Soil Survey Staff, 1998.2 NRCS Soil Classification Staff, 1999; (Soil Survey Staff, 2001)

HORIZON SUFFIXES -

Horizon	Criteria ¹
Suffixes	
а	Highly decomposed organic matter (OM); rubbed fiber content < 17% (by vol.); see <i>e, i.</i>
b	Buried genetic horizon (not used with organic materials or to separate organic from mineral materials.
С	Concretions or nodules; significant accumulation of <u>cemented</u> bodies, enriched with Fe, Al, Mn, Ti [cement not specified except <u>excludes</u> silica (see <i>q</i>)]; not used for calcite, dolomite, or soluble salts (see <i>z</i>).
CO ²	Coprogenous earth (used only with L); organic materials deposited under water and dominated by fecal material from aquatic animals.
d	<u>Physical</u> root restriction due to high bulk density (natural or human-made materials / conditions; e.g., lodgement till, plow pans etc.
di ²	Diatomaceous earth (used only with L); materials deposited under water and dominated by the siliceous remains of diatoms.
е	Moderately (intermediately) decomposed organic matter; rubbed fiber content 17-40% (by vol.); see <i>a</i> , <i>i</i> .
f	Permafrost (permanently frozen soil or ice); excludes seasonally frozen ice; continuous subsurface ice.
ff	Dry permafrost [permanently frozen soil; not used for seasonally frozen; no continuous ice bodies (see f)].
g	Strong gley (Fe reduced and pedogenically removed); typically ≤ 2 chroma; may have other redoximorphic (RMF) features; not used for geogenic gray colors.
h	Illuvial organic matter (OM) accumulation (with B: accumulation of illuvial, amorphous OM–sesquioxide complexes); coats sand and silt particles and may fill pores; use <i>Bhs</i> if significant accumulation of sesquioxides <u>and</u> moist chroma and value ≤ 3.
i	Slightly decomposed organic matter; rubbed fiber content > 40% (by vol.); see <i>a</i> , <i>e</i> .
j	Jarosite accumulation; e.g., acid sulfate soils.
jj	Evidence of cryoturbation; e.g., irregular or broken boundaries, sorted rock fragments (patterned ground), or O.M. in lower boundary between active layer and permafrost layer.

k	Dadamania assumulation of contemptors of a CoCO
	Pedogenic accumulation of carbonates; e.g. CaCO ₃ .
m	Strong pedogenic cementation or induration (> 90% cemented, even if fractured); physically root restrictive; you can indicate cement type by using letter combinations; e.g., km - carbonates, qm - silica, kqm - carbonates and silica; sm - iron, ym - gypsum; zm - salts more soluble than gypsum.
ma ²	Marl (used only with L); materials deposited under water and dominated by a mixture of clay and CaCO ₃ ; typically gray.
n	Pedogenic, exchangeable sodium accumulation.
0	Residual accumulation of sesquioxides.
р	Tillage or other disturbance of surface layer (pasture, plow, etc.). Designate <i>Op</i> for disturbed organic surface; <i>Ap</i> for mineral surface even if the layer clearly was originally an E, B, C, etc.
q	Accumulation of secondary (pedogenic) silica.
r	Used with C to indicate weathered or soft bedrock (root restrictive saprolite or soft bedrock; partially consolidated sandstone, siltstone, or shale; Excavation Difficulty classes are <i>Low</i> to <i>High</i>).
S	Significant illuvial accumulation of amorphous, dispersible, sesquioxides and organic matter complexes and moist color value or chroma \geq 4. Used with B horizon; used with h as <i>Bhs</i> if moist color value and chroma is \leq 3.
SS	Slickensides; e.g., oblique shear faces 20 - 60 ° off horizontal; due to shrink-swell clay action; wedge-shaped peds and seasonal surface cracks are also commonly present.
t	Illuvial accumulation of silicate clays (clayskins, lamellae, or clay bridging in some part of the horizon).
V	Plinthite (high Fe, low OM, reddish contents; firm to very firm moist consistence; irreversible hardening with repeated wetting and drying).
w	Incipient color or pedogenic structure development; minimal illuvial accumulations (excluded from use with transition horizons).
х	Fragipan characteristics (brittleness, firmness, bleached prisms).
у	Pedogenic accumulation of gypsum (CaSO ₄ • 2 H ₂ O).
Z	Pedogenic accumulation of salts more soluble than gypsum; e.g., NaCl, etc.

Soil Survey Staff, 1998
 NRCS Soil Classification Staff, 1999; Soil Survey Staff, 2001.

HORIZON NOMENCLATURE CONVERSION CHARTS -

Master Horizons and Combinations				
951 1	1962 ² , 1975 ³	1981 4	1998 ⁵	
_	0	0	0	
Aoo	_	(see Oi)	(see Oi)	
Ao	01	Oi and / or Oe	Oi and / or Oe	
_	02	Oe and / or Oa	Oe and / or Oa	
_	_	0i	0i	
_	_	Oe	Oe	
_	_	Oa	Oa	
	Α	Α	Α	
A1	A1	Α	Α	
A2	A2	E	E	
A3	А3	AB or EB	AB or EB	
AB	AB			
A&B	A&B	A / B or E / B	A / B or E / B	
AC	AC	AC	AC	
_	_	E and Bt	E and Bt	
	В	В	В	
B1	B1	BA or BE	BA or BE	
B&A	B&A	B/A or B/E	B / A or B / E	
B2	B2	B or Bw	B or Bw	
	_	_	_	
B3	В3	BC or CB	BC or CB	
_	_	B / C, C / B, C / A	B / C, C / B, C / A	
	С	С	С	
	_	_	_	
	_	_	_	
	_	_	_	
	R	R	R	
	L 3	_	L ^{3, 6} (1999)	
	_	_	W	
	A1 A2 A3 AB A&B AC — B1 B&A B2	951 1	951 1	

¹ Soil Survey Staff, 1951.

⁵ Soil Survey Staff, 1998

Soil Survey Staff, 1962; (same content used in Soil Taxonomy (Soil Survey Staff, 1975) except for addition of Limnic (L) horizon ³.

³ Soil Survey Staff, 1975. Limnic (L) horizon was adopted 1975, omitted 1981 ⁴, formally dropped 1985 (National Soil Taxonomy Handbook item 615.30), and resurrected in 1999 ⁶.

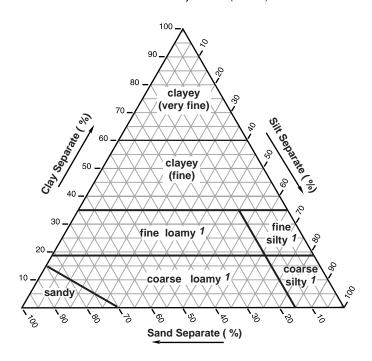
Guthrie and Witty, 1982. Additional changes to lithologic discontinuities.

⁶ NRCS Soil Classification Staff, 1999; personal communication.

Horizon Suffixes					
(also called "Horizon Subscripts," and "Subordinate Distinctions")					
	1951 ¹ 1962 ² , 1975 ² 1981 ³ 1998 ⁴ 1999 ⁵				
_	_	a	а	а	
b	b	b	b	b	
ca	ca	(see k)	(see k)	(see k)	
cn	cn	C	C	C	
_	CO 6	_	_	CO 6	
cs	cs	(see y)	(see y)	(see y)	
_	di ⁶			di 6	
_	_	е	е	е	
f	f	f	f	f	
_	_	_	ff	ff	
g	g	g	g	g	
h	h	h	h	h	
ir	ir	(see s)	(see s)	(see s)	
_	_	i	i	i	
_	_	_	j	j	
_	_	_	jj	jj	
(see ca)	(see ca)	k	k	k	
m	m 7	m	m	m	
_	ma ⁶	_	_	ma ⁶	
_	_	n	n	n	
_	_	0	0	0	
р	р	р	р	р	
(see <i>si</i>)	(see si)	q	q	q	
r 8	_	r	r	r	
(see ir)	(see ir)	s	s	s	
1	si	(see q)	(see q)	(see q)	
sa	sa	(see n)	(see <i>n</i>)	(see n)	
_	_	_	ss (1991)	SS	
t	t	t	t	t	
u	_	_	1	_	
_	_	V	V	V	
_	_	W	w	W	
_	Х	X	Х	х	
(see cs)	(see cs)	у	у	у	
sa	sa	Z	z	Z	

Soil Survey Staff, 1951.
 Soil Survey Staff, 1962; same content also used in Soil Taxonomy (Soil Survey Staff, 1975)

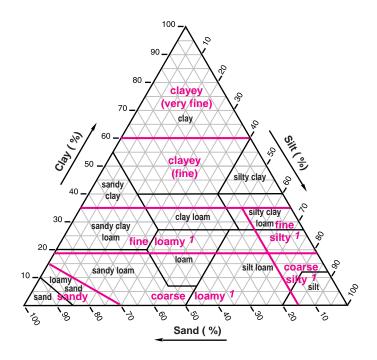
³ Guthrie and Witty, 1982.


⁴ Soil Survey Staff, 1998

⁵ NRCS Soil Classification Staff, 1999; personal communication.

- ⁶ Soil Survey Staff, 1975. Limnic materials (co, di, ma) were adopted in 1975, omitted in 1981 ³, formally dropped in 1985 (National Soil Taxonomy Handbook item 615.30), and resurrected in 1999 ⁵.
- ⁷ The definition is changed to no longer include fragipans (which become "x").
- ⁸ Definition of r (1951; dropped 1962 ²) is not the same as used since 1981 ³.

Texture Triangle


Soil textural family classes (_____)

¹ Very fine sand fraction (0.05 – 0.1 mm) is treated as silt for Soil Taxonomy family groupings; coarse fragments are considered the equivalent of coarse sand in the boundary between silty and loamy classes.

Combined Texture Triangles

Fine earth texture classes (——)
Soil textural family classes (——)

 1 Very fine sand fraction (0.05 – 0.1 mm) is treated as silt for Soil Taxonomy family groupings; coarse fragments are considered the equivalent of coarse sand in the boundary between silty and loamy classes.

- Guthrie, R.L. and J.E. Witty, 1982. New designations for soil horizons and layers and the new Soil Survey Manual. Soil Science Society America Journal, vol. 46. p.443-444.
- NRCS–Soil Classification Staff. 1999. Personal communication. USDA, National Soil Survey Center, Lincoln, NE.
- Soil Survey Staff. 1951. Soil Survey Manual. USDA, Soil Conservation Service, Agricultural Handbook No. 18, U.S. Gov. Print. Office, Washington, D.C. 437 pp.
- Soil Survey Staff. 1962. Identification and nomenclature of soil horizons. Supplement to Agricultural Handbook No.18, Soil Survey Manual (replacing pages 173-188). USDA, Soil Conservation Service, U.S. Gov. Print. Office, Washington, D.C.
- Soil Survey Staff. 1975. Soil Taxonomy, 1st Ed. USDA, Soil Conservation Service, Agricultural Handbook No. 436, U.S. Gov. Printing Office, Washington, D.C. 754 pp.
- Soil Survey Staff. 1993. Soil Survey Manual. USDA, Soil Conservation Service, Agricultural Handbook No. 18, U.S. Gov. Print. Office, Washington, D.C. 503 pp.
- Soil Survey Staff. 1998. Keys to Soil Taxonomy, 8th ed. USDA, Soil Conservation Service, U.S. Gov. Print. Office, Washington, D C. 644 pp.
- Soil Survey Staff. 1999. Soil Taxonomy, 2nd ed. USDA, Natural Resources Conservation Service, Agricultural Handbook No. 436, U.S. Gov. Print. Office, Washington, D C. 869 pp.
- Soil Survey Staff. 2001. National Soil Survey Handbook (electronic file). USDA, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE. (http://soils.usda.gov/procedures/handbook/main.htm).

GEOLOGY

Compiled by: P.J. Schoeneberger, D.A. Wysocki, E.C. Benham, NRCS, Lincoln, NE.

INTRODUCTION

The purpose of this section is to expand and augment the geologic information found or needed in the "Site Description Section" and "Soil Profile Description Section".

BEDROCK - KIND

This table is repeated here from the "Site Selection Section" for convenience in using the following rock charts.

Kind 1	С	ode	Kind 1	Co	de
	PDP	NASIS		PDP	NASIS
IGNEOUS - INTRUSIVE	=				
anorthosite	_	ANO	pyroxenite	—	PYX
diabase	_	DIA	quartz-diorite	_	QZD
diorite	1	DIO	quartz-monzonite	_	QZM
gabbro	_	GAB	syenite	_	SYE
granite	I4	GRA	syenodiorite	_	SYD
granodiorite		GRD	tachylite	_	TAC
monzonite		MON	tonalite	_	TON
peridotite	-	PER	ultramafic rock 2	-	UM
IGNEOUS - EXTRUSIV	E				
a'a lava	P8	AAL	pahoehoe lava	P9	PAH
andesite	I7	AND	pillow lava	_	PIL
basalt	I6	BAS	pumice (flow, coherent)	E6	PUM
block lava	-	BLL	rhyolite	_	RHY
dacite	_	DAC	scoria (coherent mass)	E7	SCO
latite	_	LAT	trachyte	_	TRA
obsidian		OBS			

Kind ¹	C	ode	Kind 1	Co	ode
	PDP	NASIS		PDP	NASIS
IGNEOUS - PYROCLAS	TIC				
ignimbrite	_	IGN	tuff, welded	_	TFW
pyroclastics (consolidated)	P0	PYR	tuff breccia	P7	TBR
pyroclastc flow	_	PYF	volcanic breccia	P4	VBR
pyroclastic surge	_	PYS	volcanic breccia, acidic	P5	AVB
tuff	P1	TUF	volcanic breccia, basic	P6	BVB
tuff, acidic	P2	ATU	volcanic sandstone	_	VST
tuff, basic	P3	BTU			
METAMORPHIC					<u> </u>
amphibolite	_	AMP	metavolcanics	_	MVO
gneiss	M1	GNE	mica schist	_	MSH
granofels	_	GRF	migmatite	_	MIG
granulite	_	GRL	mylonite	_	MYL
greenstone	_	GRE	phyllite	_	PHY
hornfels	_	HOR	schist	M5	SCH
marble	L2	MAR	serpentinite	M4	SER
metaconglomerate	_	MCN	slate	M8	SLA
metaquartzite	M9	MQT	soapstone (talc)	_	SPS
metasedimentary rocks 2	_	MSR			
SEDIMENTARY - CLASTI	CS				
arenite	_	ARE	mudstone	_	MUD
argillite	_	ARG	orthoquartzite	_	OQT
arkose	A2	ARK	porcellanite	_	POR
breccia, non-volcanic (angular fragments)	_	NBR	sandstone	A0	SST
breccia, non-volcanic, acidic	_	ANB	sandstone, calcareous	A4	CSS
breccia, non-volcanic, basic	-	BNB	shale	H0	SHA
claystone	_	CST	shale, acid	_	ASH
conglomerate (rounded fragments)	C0	CON	shale, calcareous	H2	CSH
conglomerate, calcareous	C2	CCN	shale, clayey	H3	YSH
fanglomerate	_	FCN	siltstone	T0	SIS
glauconitic sandstone	_	_	siltstone, calcareous	T2	CSI
graywacke	_	GRY			

Kind ¹	С	ode	Kind ¹	Co	de
	PDP	NASIS		PDP	NASIS
EVAPORITES, ORGANICS	S, AN	D PREC	CIPITATES		
chalk	L1	CHA	limestone, arenaceous	L5	ALS
chert	_	CHE	limestone, argillaceous	L6	RLS
coal	_	COA	limestone, cherty	L7	CLS
dolomite (dolostone)	L3	DOL	limestone, phosphatic	L4	PLS
gypsum	_	GYP	travertine	_	TRV
limestone	L0	LST	tufa	_	TUA
INTERBEDDED (alternation	ng lay	ers of a	lifferent sedimentary litholo	gies)	
limestone-sandstshale	B1	LSS	sandstone-shale	B5	SSH
limestone-sandstone	B2	LSA	sandstone-siltstone	В6	SSI
limestone-shale	В3	LSH	shale-siltstone	В7	SHS
limestone-siltstone	B4	LSI			

Definitions for kinds of bedrock are found in the "Glossary of Landforms and Geologic Terms", NSSH - Part 629 (Soil Survey Staff, 2001), or in the "Glossary of Geology" (Jackson, 1997).

ROCK CHARTS

The following rock charts (Igneous, Metamorphic, and Sedimentary and Volcaniclastic) summarize grain size, composition, or genetic differences between related rock types. NOTE: 1) Most, but not all, of the rocks in these tables are found in the NASIS (and PDP) choice lists. Those not in NASIS are uncommon in the pedosphere but are included in the charts for completeness and to aid in the use of geologic literature. 2) Most, but not all of the rocks presented in these tables can be definitively identified in the field; some may require additional laboratory analyses; e.g., grain counts, thin section analyses, etc.

² Generic term; use only with regional or reconnaissance surveys (e.g., Order 3, 4, 5; see Guide to Map Scales and Minimum—Size Delineations—p.7-7).

IGNEOUS ROCKS CHART

			KEY	KEY MINERIAL COMPOSITION	COMPOSIT	NON		
	<i>Acidic</i> (≈felsic)	<i>lic</i>	Intermediate ()	diate		<i>Basic</i> (≈mafic)		<i>Ultrabasic</i> (≈ultramafic)
CRYSTALLINE TEXTURE	Potassium (K) Feldspar > 2/3 of total Feldspar content	() Feldspar f total content	Potassium (K) Feldspar and Plagioclase (Na, Ca) Feldspar in about equal proportions	Feldspar and Ca) Feldspar proportions	Plagioc	Plagioclase (Na, Ca) Feldspar > 2/3 of total feldspar content	eldspar	Pyroxene and olivine
	į				Sodic (Na) Plagioclase	(Na) clase	Calcic (Ca) Plagioclase	
PEGIMATITIC (very coarse, uneven- sized crystal grains)		granite pegmatite	monzonite-	no quartz onite- atite	Quartz	No Quartz diorite- pegmatite	gabbro pegmatite	gabbro peridotite pegmatite (mostly olivine)
PHANERITIC (crystals visible and of nearly equal size)	granite	syenite	quartz monzonite	monzonite	quartz- diorite granodiorite	diorite te	gabbro	pyoxenite (mostly pyroxene)
PORPHYRITIC (relatively few visible	granite porphyry	syenite porphyry	syenite quartz porphyry monzonite porphyry	monzonite porphyry	quartz- diorite porphyry	diorite porphyry	diabase	
grained matrix)	rhyolite porphyry	trachyte porphyry	quartz-latite porphyry	latite porphyry	dacite porphyry	andesite porphyry	porphyry basalt	
APHANITIC (crystals visible only with magnification) micro ¹ crypto ²	rhyolite trachyte	trachyte	quartz latite	latite	dacite	andesite	basalt	} lava³
GLASSY	obsidian (and pitchstone	obsidian (and its varieties: perlite, pitchstone, pumice , and scoria)	perlite, d scoria)		Microcrystall magnification	Microcrystalline – crystals visible with ordinary magnification (hand lens, simple microscope).	isible with ordi nple microsco	nary pe).
(amorphous: no crystalline structure)	pyroclastics and Volcanic	pyroclastics are shown on the S and Volcaniclastic Rocks chart.	pyroclastics are shown on the Sedimentary and Volcaniclastic Rocks chart.		Cryptocrysta 3 Lava – gener non-clastic, a	- Cryptocrystaline – crystals only visible with SEM ³ Lava – generic name for extrusive flows of non-clastic, aphanitic rocks (rhyolite, andesite, an	only visible wir usive flows of (rhyolite, ande	Cryptocrystaline – crystals only visible with SEM Lava – generic name for extrusive flows of non-clastic, aphanitic rocks (rhyolite, andesite, and basalt)

Schoeneberger and Wysocki, 1998

METAMORPHIC ROCKS CHART

	ISM		tite
c.)	PLUTONIC METAMROPHISM	Extreme Grade	_ migmai
banded, et	PI	High Grade	granulite granulite
FOLIATED STRUCTURE (e.g. banded, etc.)	REGIONAL METAMORPHISM	Medium Grade	phyllite schist gneiss amphibolite granulite migmatite
FOLIATED STI	REGIONAL METAMORPH	Low Grade	slate phyllite greenstone
CRUDE ALIGNMENT	MECHANICAL METAMORPHISM	Very Low Grade	crush breccia mylonite ←—metaconglomerate —>
RUCTURE	SM	High Grade	rte ; talc)
NONFOLIATED STRUCTURE	CONTACT METAMORPHISM	Medium Grade	granofels hornfels marble metaquartzite serpentinite soapstone (<i>talc</i>)
NON	Σ	Low Grade	

^{*} Not all rock types listed here can be definitively identified in the field (e.g. may require grain counts) ** Not all rock types shown here are available on Bedrock-Kind choice list. They are included here

Schoeneberger and Wysocki, 1998 for completeness and as aids to using geoligic literature.

SEDIMENTARY AND VOLCANICLASTIC ROCKS

3	CLASTIC			NONCI	NONCLASTIC	
Domin	Dominant Grain Size		Chemical	cal	Biochemical	Organic
Very Fine Fine	Medium	Coarse				
- (Argillaceous)	(Arenaceous)	(Rudaceous)	Evaporates	Evaporates Precipitates	Accretionates	Reduzates
<0.002 mm 0.002-0.06 mm	0.06 - 2.0 mm	>2.0 mm			_	
argillite	Sandstones (ss):		anhydrite	CARBONA	CARBONATE ROCKS	
(more indurated, less	arenite	bieccia /pon volognio	(CaSO ₄)	(>50% calcite)	alcite)	
laminated and fissile)	arkose	angular frags)		emical types,	chemical types accretionary types	black shale
→ shale →	(mainly feldenar)	`		caliche	biostromal Is	(organics and
(laminated, fissile)	(manny redeption)	conglomerate	2H-O)	travertine	organic reef	fine sediments)
→ mudstone — →	giauconitic ss	vineolov-dod)		_	pelagic Is	
(non-laminated non-fissile)	("greensand") ("on-voicame,	"non-volcame,		tura	2	
(=====================================	graywacke	rounded rrags)	halite		(chalk)	al allouimilities
(= equal clay and sur)	(dark."dirtv" ss)		(NaCI)	-	bio-clastic types	bod iron ores
siltstone	orthogustrito				coquina	sain iin ii fina
d (non-laminated	United dal (2)			-	oolitic Is	
non-fissile) non-fissile)	(mainly quartz)				lithographic Is	coa
VOLCANICLASTICS (includes Pyroclastics)	CS (includes Py	roclastics)		(altered types):	pes):	
- 4		agglomerate		dolomite		
	\ \ \ \ \	(rounded frags)		(>50% calc	(>50% calcite + dolomite)	
tuff tuff	<u></u>	volcanic braccia		phosphati	phosphatic limestone	
		(angular frags)		OTHER NON	OTHER NONCLASTIC ROCKS	
pumice	(specific gravity <1.0; highly vesicular)	ular)	Silice	iliceous rocks (SiO ₂ dominated) chert (jasper, chalcedony, opal)	Siliceous rocks (SiO ₂ dominated): chert (jasper, chalcedony, opal)	
Coria		4	diate	diatomite		
(specific gravity >2.0; slightly to moderately vesicular)	slightly to moderate	ely vesicular)	rock iron k	rock phosphate iron bearing rocks (rock phosphate iron bearing rocks (Fe-SiO ₂ dominated)	

Schoeneberger and Wysocki, 2000.

Mass Movement (Mass Wasting) Types For Soil Survey (Landforms, processes, and sediments)

LANDSLIDE

	L	•		•	בייייייייייייייייייייייייייייייייייייי	-		
Movement								COMPLEX
Types:	FALL	L TOPPLE	4	SLII	SLIDE *	SPREAD	FLOW	LANDSLIDE
	(Free fall,	(Fon	tation	(Net lateral displacen	(Net lateral displacement along a slip face.)	(A wet layer becomes	(The entire mass,	[Combination of
	pouncing,	19, over a point.)	nt.)	longitoto	T	"plastic", squeezes	wet or dry, moves	multiple (2 or more)
	5	(6)		Rotational	ransiational	up and out and diags	as a viscous	(z or more)
				Slide	Slide	along intact blocks or	lidnid.)	types of
				'Lateral displacement	(Lateral displacement,	beds; e.g. extrusion,		movement.]
				along a concave slip	along a planar slip	Ilquetaction.)		
				face with backward	face; no rotation.)			
				rotation.)		(= Lateral Spread)		
				- Compound Slide	od Slide ──•			
Dominant				(Intermediate between rotational and	en rotational and			f no unique
Material				translational; e.g. a c	ranslational; e.g. a compound rock slide			sub-types are
Consolidated :	rock fall	all rock topple	ole	rotational	translational	rock spread	rock fragment flow	recognized here,
(Bedrock)				rock slide	rock slide	_	(e.g. rockfall	many possible.]
(Bedrock masses					(=planar slide)	block spread	avalanche	
dominant.)				(e.g. Toreva block)	(e.g. block glide)		=sturzstrom)	Option: name the
Unconsolidated :	debris fall	fall debris		rotational	translational	debris spread	debris avalanche	types (e.g. a
Coarser		topple		debris slide	debris slide	•	(drier, steep slope)	Complex Rock
(Coalse liagillells				1000	77.1		debris flow (wetter)	Spread - Debris
COMMISSION.)			•	debris sinde	slide ———		(e.g. lahar)	Flow Landslide).
Finer	earth fall	all earth topple	ble	rotational	translational	earth spread	earth flow	
(rine earth	(= soil fall	all) (= soil topple)	ple)	earth slide	earth slide		(e.g. creep, loess flow,	
pariicies dominant)						(e.g. sand boil)	mudflow,	
uoliillalli.,			_	(* Slides, especially rotational slides, are	ational slides, are		sandflow, solifluction)	
	_	-	0	commonly and imprecisely called "slumps".,	ely called "slumps".)	•	-	

NORTH AMERICAN GEOLOGIC TIME SCALE 1

Geologic Period	Geologic Epoch	Sub-Division	Oxygen Isotope Stage	Years (BP)
	Holocene		(1)	0 to 10-12 ka*
		Late Wisconsin	(2)	10-12 to 28 ka
		Middle Wisconsin	(3, 4)	28 to 71 ka
	Late Pleistocene	Early Wisconsin Late Sangamon	(5a - 5d)	71 to 115 ka
QUATERNARY		Sangamon	(5e)	115 to128 ka
	Pleistocene	Late Middle Pleistocene (Illinoian)	(6 - 8)	128 to 300 ka
	Middle Pleistocene	Middle Middle Pleistocene	(9 - 15)	300 to 620 ka
		Early Middle Pleistocene	(16 - 19)	620 to 770 ka
	Early Pleistocene			770 ka to 1.64 Ma**
	Pliocene			1.64 to 5.2 Ma
	Miocene			5.2 to 23.3 Ma
TERTIARY	Oligocene			23.3 to 35.4 Ma
	Eocene			35.4 to 56.5 Ma
	Paleocene			56.5 to 65.0 Ma
CRETACEOUS	Late Cretaceo	us		65.0 to 97.0 Ma
	Early Cretaced	ous		97.0 to 145.6 Ma
JURASSIC				145.6 to 208.8 Ma
TRIASSIC				208.8 to ≈ 243.0 Ma
PERMIAN				≈ 243.0 to 290.0 Ma
PENNSYLVANIAN			2	290.0 Ma to 322.8 Ma
MISSISSIPPIAN				322.8 to 362.5 Ma
DEVONIAN				362.5 to 408.5 Ma
SILURIAN				408.5 to 439.0 Ma
ORDIVICIAN				439.0 to 510.0 Ma
CAMBRIAN				510.0 to ≈ 570.0 Ma
PRE-CAMBRIAN				> ≈ 570.0 Ma

^{*} ka = x 1,000 **Ma = x 1,000,000 (\approx = approximately) Modified from Morrison, 1991; Sibrava, et al., 1986; and Harland, et al., 1990.

TILL TERMS

Genetic classification and relationships of till terms commonly used in soil survey. (Schoeneberger and Wysocki, 2000; adapted from Goldthwaite and Matsch, 1988.)

Location (Facies of tills	Till Type	s
grouped by position at time of deposition)	Terrestrial	Waterlaid
Proglacial Till (at the front of, or in front of glacier)	proglacial flow till	waterlaid flow till
Supraglacial Till (on top of, or within upper part of glacier)	supraglacial flow till 1, 3 supraglacial melt-out till 1 (ablation till - NP) 1 (lowered till - NP) 2 (sublimation till - NP) 2	
Subglacial Till (within the lower part of, or beneath glacier)	lodgement till 1 subglacial melt-out till subglacial flow till (= "squeeze till" 2, 3)	waterlaid melt-out till waterlaid flow till iceberg till (= "ice-rafted")
	(basal till - NP) ¹ (deformation till - NP) ² (gravity flow till - NP) ²	

Ablation till and basal till are generic terms that only describe "relative position" of deposition and have been widely replaced by more specific terms that convey both relative position and process. Ablation till (any comparatively permeable debris deposited within or above stagnant ice) is replaced by supraglacial melt-out till, supraglacial flow till, etc. Basal till (any dense, non-sorted subglacial till) is replaced by lodgement till, subglacial melt-out till, subglacial flow till, etc.

² Additional (proposed) till terms that are outdated or have not gained wide acceptance, and considered to be *Not Preferred*, and should not be used.

³ Also called *gravity flow till* (not preferred).

(Schoeneberger and Wysocki, 2002)

Pyro	Pyroclasts and Pyroclastic Deposits (Unconsolidated)				
Size Scale: 0.062 r	mm ¹ 2 m	nm 64 i	mm ¹		
<		tephra (all ejecta)	>		
< as	sh ¹>	< cinders ² > (specific gravity	<> (fluid-shaped		
fine ash 1	coarse ash 1	> 1.0 & < 2.0)	coarse fragments)		
		<pre> lapilli 1> (specific gravity > 2.0)</pre>	<> blocks 1> (angular-shaped coarse fragments)		
		<> scoria ²> (slightly to moderately vesicular; specific gravity > 2.0)			
c		<> (highly vesicular; specific gravity < 1.0)			
<i>,</i>	Associated Lith	ified (Consolidated)	Rock Types		
<> <> fine tuff coarse tuff		< lapillistone ¹ > (sp. gr. > 2.0)	< pyroclastic breccia>		
		<pre>< (rounded, volcanic coarse fragments)</pre>			
(consolidated	ash flows and	<pre><</pre>			
nuee ai	dentes)				

These size breaks are taken from geologic literature (Fisher, 1989) and based on the modified Wentworth scale. The 0.062 mm break is very close to the USDA's 0.05 mm break between coarse silt and very fine sand (Soil Survey Staff, 1993). The 64 mm break is relatively close to the USDA's 76 mm break between coarse gravel and cobbles. (See "Comparison of Particle Size Classes in Different Systems" in the "Profile / Pedon Description Section," under "Soil Texture".)

A lower size limit of 2 mm is required in Soil Taxonomy (Soil Survey Staff, 1994; p. 54), but is not required in geologic usage (Fisher, 1989).

³ The descriptor for pumice particles < 2 mm, as used in Soil Taxonomy (Soil Survey Staff, 1999). Geologic usage does not recognize any size restrictions for pumice.

HIERARCHICAL RANK OF LITHOSTRATIGRAPHIC UNITS ^{1, 2, 3}

Supergroup – The broadest lithostratigraphic unit. A supergroup is an assemblage of related, superposed groups, or groups and formations. Supergroups are most useful in regional or broad scale synthesis.

Group – The lithostratigraphic unit next in rank below a supergroup. A group is a named assemblage of related superposed formations, which may include unnamed formations. Groups are useful for small-scale (broad) mapping and regional stratigraphic analysis.

Formation – (Called Geologic Formation in NASIS) The basic lithostratigraphic unit used to describe, delimit, and interpret sedimentary, extrusive igneous, metavolcanic, and metasedimentary rock bodies (excludes metamorphic and intrusive igneous rocks) based on lithic characteristics and stratigraphic position. A formation is commonly, but not necessarily, tabular and stratified and is of sufficient extent to be mappable at the Earth's surface or traceable in the subsurface at conventional map scales.

[Formations can be, but are not necessarily, combined to form higher rank units (groups and supergroups), or subdivided into lower rank units (members or beds).]

Member – The formal lithostratigraphic unit next in rank below a formation and always part of a formation. A formation need not be divided selectively or entirely into members. A member may extend laterally from one formation to another.

Specifically defined types of Members: **Lens** (or Lentil): A geographically restricted member that terminates on all sides within a formation.

(continued)

LITHOSTRATIGRAPHIC UNITS (continued)

Tongue: A wedge-shaped member that extends beyond the main formation boundary or that wedges or pinches out within another formation.

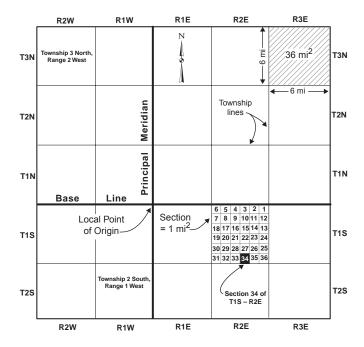
- Bed The smallest formal lithostratigraphic unit of sedimentary rock. A bed is a subdivision of a member based upon distinctive characteristics and/ or economic value (e.g. coal bed). Members need not be divided selectively or entirely into beds.
- Flow The smallest formal lithostratigraphic unit of volcanic rock. A flow is a discrete, extrusive, volcanic body distinguishable by texture, composition, superposition, and other criteria.
- 1 Lithostratigraphic units are mappable rock or sediment bodies that conform to the Law of Superposition (Article 2, Section A).
- ² Proposed as separate data element in NASIS.
- ³ Adapted from: North American Stratigraphic Code. (North American Commission on Stratigraphic Nomenclature, 1983)

- Cruden, D.M. and Varnes, D.J. 1996. Landslide Types and Processes. *In:*Turner, A.K. and R.L. Schuster, (eds.). 1996. Landslides: investigations and mitigation. National Research Council, Transportation Research Board Special Report No. 247; National Academy Press, Washington D.C.
- Fisher, R.V. 1989. Pyroclastic sediments and rocks. AGI Data Sheet 25.2. <u>In</u>: Dutro, J.T., R.V. Dietrich, and R.M. Foose, 1989. AGI data sheets for geology in the field, laboratory, and office, 3rd edition. American Geological Institute, Washington, D.C.
- Goldthwaite, R.P. and C.L. Matsch, (eds.). 1988. Genetic classification of glacigenic deposits: final report of the commission on genesis and lithology of glacial quaternary deposits of the International Union for Quaternary Research (INQUA). A.A. Balkema, Rotterdam. 294 pp.
- Harland, W.B., R.L. Armstrong, L.E. Craig, A.G. Smith, and D.G. Smith. 1990. A geologic time scale. Press Syndicate of University of Cambridge, Cambridge, UK. 1 sheet.
- Jackson, J.A. (ed.). 1997. Glossary of geology, 4th Ed. American Geological Institute, Alexandria, VA. 769 pp.
- Morrison, R.B. (ed.). 1991. Quaternary nonglacial geology: conterminous United States. Geological Society of America, Decade of North American Geology, Geology of North America, Vol. K-2. 672 pp.
- North American Commission on Stratigraphic Nomenclature. 1983. North American Stratigraphic Code: American Association Petroleum Geologists, Bulletin 67:841–875.
- Schoeneberger, P.J., and D.A. Wysocki, 1998. Personal communication. USDA-NRCS, National Soil Survey Center, Lincoln, NE.
- Schoeneberger, P.J., and D.A. Wysocki, 2000. Personal communication. USDA-NRCS, National Soil Survey Center, Lincoln, NE.
- Schoeneberger, P.J., and D.A. Wysocki, 2002. Personal communication. USDA-NRCS, National Soil Survey Center, Lincoln, NE.
- Sibrava, V., D.Q. Bowen, and D.Q. Richmond (eds.). 1986. Quaternary glaciations in the Northern Hemisphere: final report of the International Geological Correlation Programme, Project 24. Quaternary Science Reviews, Vol. 5, Pergamon Press, Oxford. 514 pp.

- Soil Survey Staff. 1993. Soil Survey Manual. USDA, Soil Conservation Service, Agricultural Handbook No. 18, U.S. Gov. Print. Office, Washington, D.C. 503 pp.
- Soil Survey Staff. 1994. Keys to Soil Taxonomy, 6th Ed. USDA, Soil Conservation Service, Pocohantas Press, Inc., Blacksburg, VA. 524 pp.
- Soil Survey Staff. 1995. Soil survey laboratory information manual. USDA-Natural Resources Conservation Service, Soil Survey Investigations Report No. 45, Version 1.0, National Soil Survey Center, Lincoln, NE. 305 pp.
- Soil Survey Staff. 1999. Soil Taxonomy, 2nd ed. USDA, Natural Resources Conservation Service, Agricultural Handbook No. 436, U.S. Gov. Print. Office, Washington, D C. 869 pp.
- Soil Survey Staff. 2001. Glossary of landforms and geologic materials. Part 629, National Soil Survey Handbook. USDA, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.
- Tennissen, A.C. 1974. Nature of earth materials. Prentice-Hall, Inc., NJ.

LOCATION

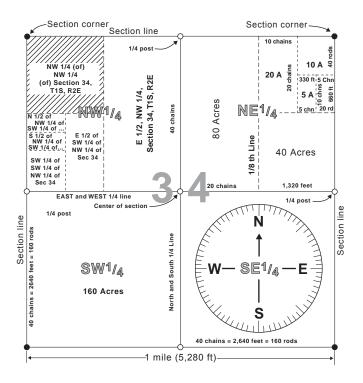
Compiled by: P.J. Schoeneberger, W.C. Lynn, D.A. Wysocki, E.C. Benham, NRCS, Lincoln, NE.


PUBLIC LAND SURVEY

The Public Land Survey is the most widely used scheme in the U.S. for land surveying (legal location). Historically, many soil descriptions have been located using this system. Some states are not part of the Public Land Survey System and use the State Plane Coordinate System. The states include Connecticut, Delaware, Georgia, Kentucky, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, Ohio (parts), Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas, Vermont, Virginia, and West Virginia.

The Public Land Survey System consists of a standard grid composed of regularly spaced squares which are uniquely numbered in reference to north-south Principal Meridians and to various, local, east-west Base lines. These squares are shown on U.S. Geological Survey topographic maps.

TOWNSHIPS and RANGES - The primary grid network consists of squares (6 miles on a side) called townships. Each township can be uniquely identified using two coordinates: 1) **Township** (the north-south coordinate relative to a local, east-west base line); and 2) **Range** (the east-west coordinate relative to a local north-south Principal Meridian). (The local base lines and Principal Meridians for the coterminous U.S. are shown on pp. 82-83, Thompson, 1987.) Commonly in soil survey, the local base line and the Principal Meridian are not recorded. The name of the appropriate USGS topographic 7.5-minute or 15-minute quadrangle is recorded instead; e.g., *Pleasant Dale, NE, 7.5 min. Quad.*


The **Township numbers** run in rows that parallel the local Base line. Each Township row is sequentially numbered relative to the row's distance from, and whether it's north (N) or south (S) of the local Base line; e.g., *T2N* (for the second township row north of the local Base line). The **Range numbers** run in rows that parallel the local Principal Meridian. Range rows are sequentially numbered relative to the row's distance from, and whether it's east (E) or west (W) of the Principal Meridian e.g., *R2E* (for the second Range row east of the Principal Meridian in the area). The combined coordinates identify a unique square in the area; e.g., *T1S*, *R2E* (for Township 1 South and Range 2 East).

Modified from Mozola, 1989.

SECTIONS - Each township square is further subdivided into smaller squares called **sections**, which make up the secondary grid in this location system. sections are 1 mile on a side (for a total of 36 sections within each township). The section numbers begin in the northeast corner of a township and progress sequentially in east-west rows, wrapping back and forth to fill in the township; e.g., *Section 34, T1S, R2E* (for Section 34 of Township 1 South, Range 2 East).

CAUTION: Due to the curvature of the earth (trying to fit a flat grid to a non-flat surface), inaccessible areas (e.g., large swamps), or to joins to other survey schemes (e.g., pre-existing Metes and Bounds), you will occasionally find irregularities in the grid system. Adjustments to the grid layout result in non-standard sized, partial sections and/or breaks in the usual numbering sequence of sections. In some areas, **Lots** are appended to the northern-most tier of sections in a township to enable the adjoining township to begin along the base line.

Modified from Mozola, 1989.

SUB-DIVISIONS - The tertiary (lower) levels of this system consist of subdividing sections into smaller pieces that are halves or quarters of the Section. The fraction (1/2, 1/4) that the area of land represents of the section is combined with the compass quadrant that the area occupies within the section; e.g., *SW 1/4, Section 34, T1S, R2E* (for the southwest quarter of Section 34, Township 1 South, Range 2 East). Additional subdivisions, by quarters or halves, can be continued to describe progressively smaller areas. The information is presented consecutively, beginning with the smallest subdivision; e.g., *N 1/2, NW 1/4, SW 1/4, NW 1/4, of Section 34, T1S, R2E* (for the north half of the northwest quarter of the southwest quarter of the northwest quarter of Section 34, Township 1 South, Range 2 East).

NOTE: **Point locations** (e.g., soil pits) are measured, traditionally in English units, with reference to a specified section corner or quarter corner (1/4 post); e.g., 660 feet east and 1320 feet north of southwest corner post, Section 34, T1S, R2E.

STATE PLANE COORDINATE SYSTEM

The State Plane Coordinate System is the second most widely used scheme in the U.S. for land surveying (legal location). Historically, many soil descriptions have been located using this system. The states that have used this system are: Connecticut, Delaware, Georgia, Kentucky, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, Ohio (parts), Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas, Vermont, Virginia, and West Virginia. The other states use the Public Land Survey System.

The State Plane Coordinate System is based upon two Principal lines in the state; a north-south line and an east-west line. Most USGS topographic quadrangle maps indicate the state grids by tick marks along the neatlines (outer-most border) on 7.5-minute topographic maps of states that use State Plane Coordinates.

Specific coordinates for a point are described by distance (commonly in meters) and primary compass direction [north (northing) / south (southing) and east (easting) / west (westing)] relative to the Principal lines; e.g., 10,240 m easting, and 1,234 m northing.

Contact the local State NRCS Office or the Regional MO Office for statespecific details.

UNIVERSAL TRANSVERSE MERCATOR (UTM) RECTANGULAR COORDINATE SYSTEM

The Universal Transverse Mercator (UTM) Rectangular Coordinate System is widely available and has been advocated as the universal map coordinate standard by the USGS (Morrison, 1987). It is a metric-based system whose primary unit of measure is the meter. The dominant UTM grid circles the globe and spans latitudes from 80 °S through 84 °N (the extreme polar areas require a different projection). The dominant grid is divided into 60 zones around the world. Zones begin at the International Date Line Meridian in the Pacific and progress eastward around the world. Each zone extends from 80 °S through 84 °N latitude and spans 6 degrees of longitude. The logic of the UTM grid is similar to that of State Plane Coordinates. The UTM System uses 2 values and a zone letter to arrive at unique coordinates for any point on the earth's surface: 1) distance (and direction) away from the Equator called **northing** (or **southing**) to identify the hemisphere, and 2) distance away from the local zone's meridian called an **easting**.

Around the perimeter of 7.5-minute USGS topographic quadrangle maps are blue tic marks which intersect the map boundary at 1 km intervals. The Northing measures the distance from the Equator northward; e.g., 4, 771,651 meters N (in the Southern Hemisphere the Southing measures the distance from the Equator southward). The easting measures the distance eastward from the local Meridian (the same Easting designation is used in the Southern Hemisphere); e.g., 305, 904 meters E. A complete example: 305, 904 meters E; 4, 771,651 meters N; 16, N (for the location of the capitol dome in Madison, Wisconsin, which is located within zone 16).

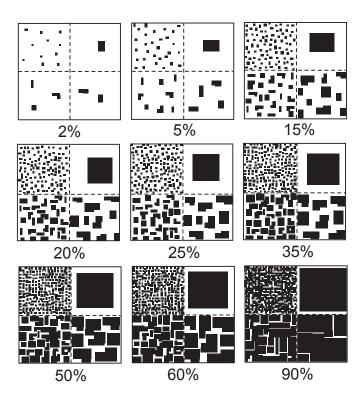
If the USGS topographic map has a complete kilometer grid (shown in blue), measure the distance (cm) from the point of interest to the closest north-south reference line (to the west of the point of interest). If the map scale is 1:24000, multiply the measured distance (cm) by 240 to calculate the actual ground distance in meters. If the scale is 1:20000, multiply by 200, etc. Add this partial distance to that of the chosen km reference line to obtain the easting to be recorded.

If no kilometer grid is shown on the topographic map, locate the kilometer tic points along the east-west perimeters immediately south of the point of interest. Place a straight edge between the tic marks and draw a line segment south of the point of interest. Measure the distance (cm) from the point of interest to the east-west line segment. Multiply this distance by the appropriate map scale factor as mentioned above. Add this distance to that of the east-west base line to obtain the Northing (distance from the Equator). The Northing must be identified as *N* for sites north of the Equator and *S* for sites south of the Equator.

Alternatively, a variety of clear UTM templates are commercially available which can be overlain upon the topographic map to facilitate determining distances and coordinates.

REFERENCES

Mozola. A.J. 1989. U.S. Public Land Survey. <u>In</u>: Dutro, J.T., R.V. Dietrich, and R.M. Foose, AGI Data Sheets, 3rd Ed., American Geologic Institute, United Book Press. Inc.


Thompson, M.M. 1987. Maps for America, 3rd Ed. U.S. Geological Survey, U.S. Dept. Interior, U.S. Gov. Print. Office, Washington, D.C.

MISCELLANEOUS

Compiled by: P.J. Schoeneberger, D.A. Wysocki, E.C. Benham, H.E. LaGarry, NRCS, Lincoln, NE.

EXAMPLES OF PERCENT OF AREA COVERED

The following graphic can be used for various data elements to convey "Amount" or "Quantity." **NOTE**: Within any given box, each quadrant contains the same total area covered, just different sized objects.

MEASUREMENT EQUIVALENTS & CONVERSIONS

METRIC TO ENGLISH

Known	Symbol	Multiplier	Product	Symbol
LENGTH				
micrometers (microns	i) μm	3.9370	inches	in or "
(=10,000 Angstrom ι	units)	x 10 ⁻⁵		
millimeters	mm	0.03937	inches	in or "
centimeters	cm	0.0328	feet	ft or '
centimeters	cm	0.3937	inches	in or "
meters	m	3.2808	feet	ft or '
meters	m	1.0936	yards	yd
kilometers	km	0.6214	miles (statute)	mi
AREA				
square centimeters	cm ²	0.1550	square inches	in ²
square meters	m²	10.7639	square feet	ft ²
square meters	m²	1.1960	square yards	yd ²
square kilometers	km²	0.3861	square miles	mi²
hectares	ha	2.471	acres	ac
VOLUME				
cubic centimeters	cm³	0.06102	cubic inches	in³
cubic meters	m^3	35.3146	cubic feet	ft ³
cubic meters	m³	1.3079	cubic yards	yd³
cubic meters	m^3	0.0008107	acre-feet	acre-ft
			(= 43,560 ft ³)	
cubic kilometers	km³	0.2399	cubic miles	mi ³
liters (=1000 cm≈)	1	1.0567	quarts (U.S.)	qt
liters	1	0.2642	gallons (U.S.)	gal
milliliter	ml	0.0338	fluid ounces	OZ
1 milliliter = 1 cm ³ =	1 gm (H ₂ 0,	at 25°C)		
MASS				
grams	g	0.03527	ounces (avdp.)	OZ
kilograms	kg	2.2046	pounds (avdp.)	lb
megagrams	Mg	1.1023	short tons	
(= metric tons)			(2000 lb)	
megagrams	Mg	0.9842	long tons (2240 lb)	

ENGLISH TO METRIC

Known	Symbol	Multiplier	Product	Symbol
LENGTH				
inches	in or "	2.54 x 10 ⁴	micrometers (micron	s) µm
			[= 10,000 Angstrom	ı units (A)]
inches	<i>in</i> or "	2.54	centimeters	cm
feet	ft or '	30.48	centimeters	ст
feet	ft or '	0.3048	meters	m
yards	yd	0.9144	meters	m
miles (statute)	mi	1.6093	kilometers	km
AREA				
square inches	in²	6.4516	sq. centimeters	cm²
square feet	ft²	0.0929	sq. meters	m²
square yards	yd²	0.8361	sq. meters	m²
square miles	mi²	2.5900	sq. kilometers	km²
acres	ac	0.405	hectares	ha
VOLUME				
acre-feet	acre-ft	1233.5019	cubic meters	m³
acre-furrow-slice	afs	= 6 in. thick	k layer that's 1 acre in	area
≈ 2,000,000 lbs	(assum	es b.d. = 1.3 (g/cm ³)	
cubic inches	in³	16.3871	cubic centimeters	cm³
cubic feet	ft³	0.02832	cubic meters	m³
cubic yards	yd³	0.7646	cubic meters	m³
cubic miles	mi³	4.1684	cubic kilometers	km³
gallons (U.S. liquid) gal	3.7854	liters	1
(= 0.8327 Imperia	ıl gal)			
quarts (U.S. liquid)	qt	0.9463	liters (= 1000 cm ³)	1
ounces	OZ	29.57	milliliters	ml
1 milliliter = 1 cm	3 = 1 gm	(H ₂ 0, at 25 °C	C)	
MASS				
ounces (avdp.)	OZ	28.3495	grams	g
ounces (avdp.) (1		-		
pounds (avdp.)	lb	0.4536	kilograms	kg
short tons (2000 lb)	0.9072	megagrams (= metric tons)	Mg
long tons (2240 lb)		1.0160	megagrams	Mg

COMMON CONVERSION FACTORS

Known	Symbol	Multiplier	Product	Symbol
acres	ac	0.405	hectares	ha
acre-feet	acre-ft	1233.5019	cubic meters	m³
acre-furrow-slice	afs	= 6 in. thick lay	yer that's 1 acre square	Э
≈ 2,000,000 lbs	(assume	s b.d. = 1.3 g/cm ³	5)	
Angstrom units	Α	1x 10 ⁻⁸	centimeters	cm
Angstrom units	Ā	1x 10-4	micrometers	 m
Atmospheres	atm	1.0133 x 10 ⁶	dynes/cm ²	
Atmospheres	atm	760	mm of mercury (Hg)	
BTU (mean)	BTU	777.98	foot-pounds	
centimeters	<u>cm</u>	0.0328	<u>feet</u>	ft or
centimeters	cm	0.3937	inches	in or "
centimeters/hour	cm/hr	0.3937	inches/hour	in/hr
centimeters/second	cm/s	1.9685	feet/minute	ft/min
centimeters/second	cm/s	0.0224	miles/hour	mph
chain (US)		66	feet	ft
chain (US)		4 — — —	rods	
cubic centimeters	cm ³	0.06102	cubic inches	in³
cubic centimeters	cm³	2.6417 x 10 ⁻⁴	gallons (U.S.)	gal
cubic centimeters	cm ³	0.999972	milliliters	ml
cubic centimeters	cm ³	0.0338	ounces (US)	0Z
cubic feet	ft ³	0.02832	cubic meters	m³
cubic feet (H ₂ O, 60 °F)	ft ³	62.37	pounds	lbs
cubic feet	ft ³	0.03704	cubic yards	yd³
cubic inches	in³	16.3871	cubic centimeters	cm³
cubic kilometers	km³	0.2399	cubic miles	mi ³
cubic meters	m³	35.3146	cubic feet	ft³
cubic meters	m³	1.3079	cubic yards	yd³
cubic meters	m³	0.0008107	acre-feet (= 43,560 ft ³)	acre-ft
cubic miles	mi ³	4.1684	cubic kilometers	km ³
cubic yards	yd³	0.7646	cubic meters	m³
degrees (angle)	0	0.0028	circumfrences	
Faradays		96500	coulombs (abs)	
fathoms		6	feet	ft
feet	ft or ´	30.4801	centimeters	cm
feet	ft or '	0.3048	meters	т
feet	ft or '	0.0152	chains (US)	
feet	ft or ´	0.0606	rods (US)	

Known	Symbol	Multiplier	Product	Symbol
foot pounds		0.0012854	BTU (mean)	BTU
gallons (US)	gal	3.7854	liters	1
gallons (US)	gal	0.8327	Imperial gallons	
gallons (US)	gal	0.1337	cubic feet	ft ³
gallons (US)	gal	128	ounces (US)	OZ
grams		0.03527	ounces (avdp.)	
hectares	ha	2.471	acres	ac
horsepower		2545.08	BTU (mean)/hour	
inches	in or "	2.54 x 10 ⁴	micrometers (micr	on) <i>µm</i>
			[= 10,000 Angstr	om units (A)]
inches	in or "	2.5400	centimeters	cm
inches/hour	in/hr	2.5400	centimeters/hour	cm/hr
inches/hour	in/hr	7.0572	micrometers/sec	μm/sec
kilograms	kg	2.2046	pounds (avdp.)	lb
kilometers	km	0.6214	miles (statute)	mi
joules	_ _	1 x 10 ⁷	ergs	
liters	1	0.2642	gallons (US)	gal
liters	1	33.8143	ounces	OZ
liters (= 1000 cm ³)	1	1.0567	quarts (US)	qt
long tons (2240 lb)		1.0160	megagrams	Mg
megagrams	 Mg	1.1023	short tons	
(= metric tons)			(2000 lb)	
megagrams	Mg	0.9842	long tons	
			(2240 lb)	
meters	_m	3.2808	feet	ft or
meters	m	39.37	inches	in
micrometers (microns)	μ m	1.000	microns	μ
micrometers/second	μm/sec	0.1417	inches/hour	in/hr
micron	μ	1 x 10-4	centimeters	cm
microns	_μ	3.9370	inches	<u>in or ″</u>
(=10,000 Angstrom ur	nits)	x 10 ⁻⁵		
micron	μ	1.000	micrometer	μm
miles (statute)	mi	1.6093	kilometers	km
miles/hour	mph	44.7041	cent./second	cm/s
miles/hour	mph	1.4667	feet/second	ft/s
milliliter	ml	0.0338	fluid ounces	OZ
1 milliliter ≈ 1 cm ³ = 1	${\rm gm}~({\rm H_2O},$			
milliliter	ml	1.000028	cubic centimeters	cm³
millimeters	mm	0.03937	inches	<i>in</i> or "
ounces	OZ	29.5729	milliliters	ml
1 milliliter ≈ 1 cm ³ = 1	gm (H ₂ O,	at 25 °C)		

Known	Symbol	Multiplier	Product	Symbol
ounces (avdp.) ounces (avdp.) 1 troy oz. = 0.083 lb	OZ	28.3495	grams	g
pints (US)	pt	473.179	cubic centimeters	cm³ or cc
pints (US)	pt	0.4732	liters	<u> </u>
pounds (avdp.)	lb	0.4536	kilograms	kg
quarts (US liquid)	qt	0.9463	liters (= 1000 cm ³)	I
rods (US)		0.25	chains (US)	ft
rods (US)		16.5	feet (US)	<u>ft</u>
short tons (2000 lb)		0.9072	megagrams (= metric tons)	Mg
square centimeters	cm ²	0.1550	square inches	in²
square feet	ft²	0.0929	square meters	m²
square inches	in ²	6.4516	sq. centimeters	cm ²
square kilometers	km²	0.3861	square miles	mi²
square meters	m²	10.7639	square feet	ft²
square meters	m²	1.1960	square yards	yd²
square miles	mi²	2.5900	square kilometers	km²
square yards	yd ²	0.8361	square meters	m²
yards	yd	0.9144	meters	т

Guide to Map Scales and Minimum-Size Delineations 1

Order of Soil	Map Scale	Inches Per Mile		ım Size eation ²
Survey			Acres	Hectares
	1:500	126.7	0.0025	0.001
	1:1,000	63.4	0.100	0.004
Order 1	1:2,000	31.7	0.040	0.016
	1:5,000	12.7	0.25	0.10
	1:7,920	8.0	0.62	0.25
	1:10,000	6.34	1.00	0.41
	1:12,000	5.28	1.43	0.6
Order 2	1:15,840	4.00	2.50	1.0
	1:20,000	3.17	4.00	1.6
	1:24,000 ³	2.64	5.7	2.3
Order 3	1:30,000	2.11	9.0	3.6
	1:31,680	2.00	10.0	4.1
	1:60,000	1.05	36	14.5
Order 4	1:62,500 4	1.01	39	15.8
	1:63,360	1.00	40	16.2
	1:80,000	0.79	64	25.8
	1:100,000	0.63	100	40
	1:125,000	0.51	156	63
Order 5	1:250,000	0.25	623	252
	1:500,000	0.127	2,500	1,000
	1:750,000	0.084	5,600	2,270
Very	1:1,000,000	0.063	10,000	4,000
General	1:7,500,000	0.0084	560,000	227,000
	1:15,000,000	0.0042	2,240,000	907,000

Modified from: Peterson, F.F. 1981. Landforms of the Basin and Range Province, defined for Soil Survey. Nevada Agricultural Experiment Station, Technical Bulletin No. 28, Reno, NV.

Traditionally, the minimum size delineation is assumed to be a 1/4 inch square, or a circle with an area of 1/16 inches². Cartographically, this is about the smallest area in which a conventional soil map symbol can be legibly printed. Smaller areas can, but rarely are, delineated and the symbol "lined in" from outside the delineation.

³ Corresponds to USGS 7.5-minute topographic quadrangle maps.

⁴ Corresponds to USGS 15-minute topographic quadrangle maps.

COMMON SOIL MAP SYMBOLS (TRADITIONAL)

(From the National Soil Survey Handbook, Title 170, Part 601, 1990.) The following symbols are common on field sheets (original aerial photograph based soil maps) and in many soil surveys published prior to 1997. Current guidelines for map compilation symbols are in NSSH, Exhibit 627-5, 2001

SYMBOL FEATURE LANDFORM FEATURES BaC SOIL DELINEATIONS: MiA **ESCARPMENTS:** Bedrock (Points down slope) Other than bedrock (Points down slope) SHORT STEEP SLOPE **GULLY** DEPRESSION, closed SINKHOLE Prominent hill or peak **EXCAVATIONS:** Soil sample site (Type location, etc.) Borrow pit Gravel pit Mine or quarry LANDFILL

FEATURE

SYMBOL

MISC. SURFACE FEATURES:

Wet spot

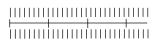
Blowout	ullet
Clay spot	*
Gravelly spot	••
Lava flow	Λ
Marsh or swamp	w
Rock outcrop (includes sandstone and shale)	V
Saline spot	+
Sandy spot	•••
Severely eroded spot	=
Slide or slip (tips point upslope)	})
Sodic spot	Ø
Spoil area	Ξ
Stony spot	0
Very stony spot	0

FEATURE SYMBOL ROAD EMBLEMS: Interstate Federal State County, farm or ranch 378 **CULTURAL FEATURES: RAILROAD** POWER TRANSMISSION LINE (normally not shown) **PIPELINE** H H H H H(normally not shown)

FENCE

(normally not shown)

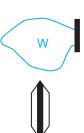
CULTURAL FEATURES (cont'd)


LEVEES:

Without road

With road

With railroad


Single side slope

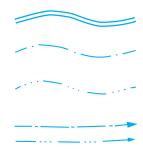
(showing actual feature location)

DAMS

Medium or small

Large

HYDROGRAPHIC FEATURES:

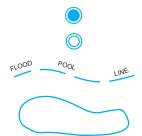

STREAMS:

Perennial, *double* line (large)

Perennial, single line (small)

Intermittent

Drainage end or flow direction


SMALL LAKES, PONDS AND RESERVOIRS:

Perennial water

Miscellaneous water

Flood pool line

Lake or pond (perennial)

MISCELLANEOUS WATER FEATURES:

Spring

Well, artesian

Well, irrigation

MISCELLANEOUS CULTURAL FEATURES:

Airport	†
Cemetery	
Farmstead, house (omit in urban areas)	•
Church	<u> </u>
School	i
Other religion (label)	▲ Mt Carmel
Located object (label)	Ranger Station
Tank (label)	 Petroleum
Lookout tower	A
Oil and/or Natural gas wells	A
Windmill	$\stackrel{\star}{\sim}$
Lighthouse	

FIELD SAMPLING

Compiled by: P.J. Schoeneberger, D.A. Wysocki, E.C. Benham, NRCS, Lincoln, NE.

INTRODUCTION

This section contains a variety of miscellaneous information pertinent to the sampling of soils in the field.

Additional details of soil sampling for the National Soil Survey Laboratory (NRCS, Lincoln, NE) are provided in Soil Survey Investigations Report No. 42 (Soil Survey Staff, 1996).

SOIL SAMPLING

The objective of the task determines the methodology and the location of the soil material collected for analysis. Sampling for Taxonomic Classification purposes involves different strategies than sampling for soil fertility, stratigraphy, hydric conditions, etc. There are several general types of samples and sampling strategies that are commonplace in soil survey.

SOIL SAMPLE KINDS -

Reference Samples (also loosely referred to as "grab" samples) - This is applied to any samples that are collected for very specific, limited analyses; e.g., only pH. Commonly, reference samples are not collected for all soil layers in a profile; e.g., only the top 10 cm; only the most root restrictive layer, etc.

Characterization Samples - These samples include sufficient physical and chemical soil analyses, from virtually all layers, to fully characterize a soil profile for Soil Taxonomic and general interpretive purposes. The specific analyses required vary with the type of material; e.g., a Mollisol requires some different analyses than does an Andisol. Nonetheless, a wide compliment of data (i.e., pH, particle size analysis, Cation Exchange Capacity, ECEC, Base Saturation, Organic Carbon content, etc.) are determined for all major soil layers.

SAMPLING STRATEGIES - [To be developed.]

Field Equipment Checklist

Digging Tools (commonly choose 1 or 2): see graphic

Bucket Auger

Sharp Shooter

Montana Sharp Shooter (for rocky soils)

Tile Spade (only for well cultivated or loose material)

Spade (standard shovel)

Push Probe (e.g., Backsaver®, Oakfield®, etc.) - include a clean-out tool

Pulaski

Soil Description

Knife

Hand Lens (10X or combination lenses)

Acid Bottle (1N - HCI)

Water Bottle

Color Book (e.g., Munsell®, EarthColors®, etc.)

Picture Tapes ("pit tape" - metric preferred)

Tape Measure (metric or English and metric)

(3) Ultra-Fine Point Permanent Marker Pens

Pocket pH Kit or Electronic "Wand"

Pocket Soil Thermometer

Camera

Sample bags (for grab samples)

Soil Description Sheet (232 or PEDON description form)

Site Description

Field Note Book

GPS Unit

Abnev Level

Clinometer

Compass

Altimeter (pocket-sized)

Field References

Field Book for Describing and Sampling Soils

Aerial Photographs

Topographic Maps (1:24,000, 7.5 min; 1:100,000)

Geology Maps

Soil Surveys (county or area)

AGI Field Sheets

Personal Protective Gear

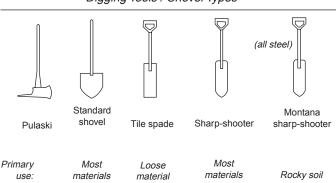
Small First Aid Kit

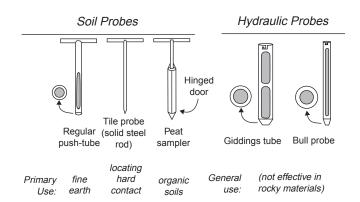
Leather Gloves

Sunglasses

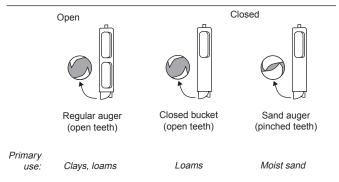
Insect Repellent

Sunscreen

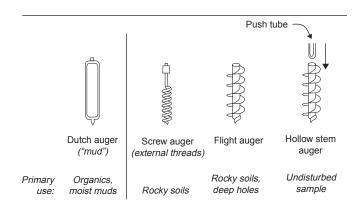

Hat


Drinking water

EXAMPLES OF COMMON FIELD -SAMPLING EQUIPMENT


(Use of trade or company names is for informational purposes only and does not constitute an endorsement.)

Digging Tools / Shovel Types



Bucket Auger Types

External Thread Augers

REFERENCES

Soil Survey Staff. 1996. Soil survey laboratory methods manual. USDA Natural Resources Conservation Service, Soil Survey Investigations Report No. 42, Version 3.0, National Soil Survey Center, Lincoln, NE. 693 pp.

INDEX

Α

Across Slope • 1-6, 3-37, 3-38
Air Temperature • 1-1
Alpha-Alpha Dipyridl • 2-72
Anthric Saturation • 1-13
Anthropogenic Feature • 1-4, 3-1, 3-10, 3-19
Area Covered (%) Example • 7-1
Argillans • 2-25
Aspect • See Slope Aspect

В

Bedrock • 1-20
Depth to Bedrock • 1-22
(Bedrock)-Fracture Interval Class • 1-22
Hardness • 1-22
Kind • 1-20, 5-1
Weathering Class • 1-22
Biological Concentrations • 2-18, 2-20
Biological Crusts • 2-64, 2-65
Boundary Distinctness. See Horizon Boundary Distinctness • 2-5
Bridging (clay) • 2-25, 2-26
Brittleness • 2-52
Bypass Flow • 2-61

C

Calcium Carbonate Equivalent Test • 2-72
Carpedolith • 2-67
Cementing Agents • 2-51
Cementation Classes (Rupture Resistance) • 2-50
Characterization Samples • 8-1
Chemical Agent • 2-71
Chemical Crusts • 2-64
Chemical Response • 2-70
Clay Depletions • 2-14, 2-15
Clay Films • 2-25
Climate • 1-1
Coastal Marine and Estuarine (Geomorphic Environments;
Landforms) • 3-20
Coats • 2-25

Color Contrast • See Mottle Contrast Color Location • 2-8 Color, Mechanical Condition • 2-8 Color Physical State (NASIS) • See Soil Matrix Color – Location or Condition Color, Redoximorphic Condition • 2-8 Common Conversion Factors • 7-4 Common Field Sampling Equipment (Examples) • 8-3 Common Horizons • 2-2 Common Soil Map Symbols (Traditional) • 7-8 Comparison of Particle Size Classes in Different Systems (table) • 2-35 Compositional Texture Modifiers • 2-32 Concentrations • 2-19 Boundary • 2-24 Color • 2-21 Contrast • 2-21 Hardness • 2-24 Kind • 2-19 Location • 2-23 Moisture State • 2-21 Quantity • 2-21 Shape • 2-23 Size • 2-21 Concentrations (Discussion) • 2-18 Concretions • 2-14, 2-15, 2-18, 2-19, 2-20 Consistence • 2-49 Contrast of Soil Mottles • 2-11, 2-12 Coprogenous Earth • 1-27, 2-32 County FIPS Code • 1-2, 1-3 Cracks • 2-61 Depth • 2-63 Kind • 2-62 Relative Frequency • 2-63 Crusts • See Soil Crusts Crust-Related Cracks • 2-61, 2-62 Cryptogamic Crust • 2-67 Crystals • 2-18, 2-19, 2-20

D

Date • 1-1
Datum Name • 1-2
Decision Flowchart For Describing Soil Colors • 2-7
Delineation Size (Transect) • 1-3
Dendritic Tubular Pores • 2-59, 2-60
Densic Contact • 1-27
Densic Materials • 1-27

Depressional (Landforms) • 3-34 Depositional Crust • 2-64 Depth (To Bedrock) • 1-22 Depth To Water Table • 1-14 Describer(s) Name • 1-1 Desert Pavement • 2-67 Diagnostic Horizons • 1-26, 2-4 Diagnostic Properties • 1-26 Diagnostic Properties - Mineral Soils • 1-27 Diagnostic Properties - Organic Soils • 1-27 Diagnostic Subsurface Horizons • 1-26 Diatomaceous Earth • 1-27, 2-32 Down Slope • 1-6, 3-37, 3-38 Drainage • 1-10 Drainage Class • 1-10 Drainage Network See Drainage Pattern Drainage Pattern • 3-1, 3-41 Durinode • 1-27, 2-20 Duripan • 1-26, 2-34 Duripan Fragments • 2-37

Ε

Earth Cover - Kind • 1-15 Effervescence • 2-71 Chemical Agent • 2-71 Class • 2-71 Electrical Conductivity • 2-72 Elevation • 1-4, 3-1, 3-37 Endosaturation • 1-13 English To Metric (conversions) • 7-3 Eolian Deposits • 1-17 Eolian (Geomorphic Environment; Landforms) • 3-25 Epipedons • 1-26 Episaturation • 1-13 Erosion • 1-23 Degree Class • 1-23 Kind • 1-23 Erosional Lag • 2-67 Erosional (Landforms) • 3-33 Estuarine (Geomorphic Environment; Landforms) • 3-20 Evaporites • 1-21, 5-3, 5-6 Excavation Difficulty • 2-55 Excavation Difficulty Class • 2-55

F

```
Faunal Burrows • 2-67
Fecal Pellets • 2-20
Ferriargillans • 2-15, 2-25
Field Equipment Checklist • 8-2
Field Notes • 2-73
Field pH (NASIS) . See Reaction-pH
Field Sampling • 8-1
Filaments • 2-23
Films • 2-15, 2-25, 2-26
Finely Disseminated Materials • 2-18, 2-19
FIPS Code • 1-3
Fissures • 2-61
Flat Plains (Geomorphic Components of) • 1-9, 3-41
Flooding • 1-11
  Duration • 1-12
  Frequency • 1-11
  Months • 1-12
Fluidity • 2-52
Fluvial (Geomorphic Environment; Landforms) • 3-22
Formation (Lithostratigraphic Unit) • 5-12
Fragipan • 1-26
Fragments • See Rock and Other Fragments
Fragment Roundness • See Rock And Other Fragments - Roundness
Freeze-thaw Crust • 2-65, 2-66
```

G

```
Geologic Formation (NASIS) • See Formation
Geologic Time Scale • See North American Geologic Time Scale
Geology • 5-1
References • 5-13
Geomorphic Component • 1-7, 3-1, 3-39
Flat Plains • 1-9, 3-1, 3-41
Hills • 1-7, 3-1, 3-39
Mountains • 1-8, 3-1, 3-40
Terraces, Stepped Landforms • 1-7, 3-1, 3-40
Geomorphic Description • 1-4, 3-1, 3-11
References • 3-44
Geomorphic Description (Outline) • 3-10
Geomorphic Description System • 3-1
Geomorphic Information • 1-4
```

Geomorphology • 3-1
References • 3-44
Gilgai Microfeatures • 2-42
Glacial Deposits • 1-17
Glacial (Geomorphic Environment; Landforms) • 3-26
Ground Surface • 2-4
Group (Lithostratigraphic Unit) • 5-12
Guide To Map Scales And Minimum-Size Delineations • 7-7
Gully (Erosion) • 1-23
Gully (microfeature) • 3-17, 3-23, 3-33

Н

Hard Rock Fragments • See Rock Fragments Hierarchical Rank of Lithostratigraphic Units • 5-11 Hills (Geomorphic Components of) • 1-7, 3-39 Hillslope - Profile Position • 1-6, 3-1, 3-38 Hillslope Position • See Hillslope - Profile Position Horizon Boundary • 2-5 Distinctness • 2-5 Topography • 2-5 Horizon Depth • 2-4 Horizon Feature Kind (NASIS) • See Special Features Horizon Modifiers (Other) • 2-4 Numerical Prefixes • 2-4 Prime • 2-4 Horizon Nomenclature • 2-2, 4-1 Horizon Nomenclature Conversion Charts • 4-5 Horizon Subscripts • See Horizon Suffixes Horizon Suffixes • 2-3, 4-3, 4-6 Horizon Thickness • 2-5 Hortonian Flow • 1-24 Hydraulic Conductivity • 2-68 Hydrophobic Layer • 2-67 Hydrothermal See Volcanic and Hydrothermal (Geomorphic Environments; Landforms) • 3-30 Hypocoats • 2-15, 2-25, 2-26

i

Ice Wedge Cast • 2-67 Igneous Rocks • 1-20, 5-1 Igneous Rocks Chart • 5-4 Index (of) Surface Runoff Classes • 1-24 In-Place Deposits • 1-17 Insect casts • 2-18, 2-19, 2-20 Interbedded Rocks • 1-22, 5-3 Internal Flow • 1-24 Interstitial Pores • 2-59, 2-60 Inter-Structural Voids • 2-59 Interval (Transect) • 1-3 Iron Depletions • 2-14 Irregular Pores • 2-59, 2-60

Κ

Ksat • See Saturated Hydraulic Conductivity Krotovinas • 2-67

L

Lacustrine (Geomorphic Environment; Landforms) • 3-21
Lamellae • 1-27, 2-23, 2-67
Lamina • 2-67
Landform • 1-4, 3-1, 3-10, 3-12
Landscape • 1-4, 3-1, 3-10, 3-11
Landslide • See Mass Movement (Geomorphic Environment; Landforms),
Mass Movement Types for Soil Survey
Landuse • See Earth Cover - Kind
Limnic Materials • 1-27, 2-32
Lithic Contact • 1-27
Lithostratigraphic Units • 1-17, 1-20, 5-11
Local Physiographic / Geographic Name • 1-4, 3-1, 3-9
Location • 1-2, 6-1
References • 6-5
Loess doll (Kindchen, puppy) • 2-20

М

Major Land Resource Area • 1-3
Mangans • 2-15, 2-25
Manner of Failure • 2-52
Marl • 1-27, 2-32
Mass Movement Deposits • 1-17
Mass Movement (Geomorphic Environment; Landforms) • 3-29
Mass Movement Types for Soil Survey • 5-7
Masses • 2-14, 2-15, 2-18, 2-20
Mass Wasting • See Mass Movement
Master Horizons • 2-2, 4-1, 4-5
Matrix Color • See Soil Matrix Color
Mean Sea Level • 1-4, 3-37

Measurement Equivalents & Conversions • 7-2 Member (Lithostratigraphic Unit) • 5-12 Metamorphic Rocks • 1-21, 5-2 Metamorphic Rocks chart • 5-3 Metric To English (conversions) • 7-2 Microbiotic Crust • 2-64, 2-67 Microfeature • 1-4, 3-1, 3-10, 3-17 Microfeature (terms) • 3-17 Microrelief • 1-9, 2-42, 3-1, 3-41 Mineral Crusts • 2-64 Minimum Data Set • 2-73 Miscellaneous • 7-1 Miscellaneous Field Notes • 2-73 MLRA • 1-3 Month / Day / Year • 1-1 Mottles • 2-9 Color • 2-13 Contrast (also called Color Contrast) • 2-11 Moisture State • 2-13 Quantity • 2-9 Shape • 2-13 Size • 2-9 Mountains (Geomorphic Components of) • 1-8, 3-40 Multicolored Pattern • 2-8

Ν

Name • 1-1 Nodules • 2-14, 2-15, 2-18, 2-19, 2-20 North American Geologic Time Scale • 5-8

0

Observation Method • 2-1
Kind • 2-1
Relative Size • 2-1
Observed Soil Moisture Status (NASIS) • See (Soil) Water State • 1-13
Odor • 2-73
Organic Deposits • 1-18
Organics • 1-21, 5-3
Ortstein • 1-26, 2-34
Ortstein Fragments • 2-37
Overland Flow • 1-24
Oxidation / Reduction • 2-14

```
Paralithic Contact • 1-27
Paralithic Materials • 1-27
Pararock Fragments • 2-31
Parent Material • 1-17
Particle Size Distribution • 2-29
Particle Size Classes • 2-35, 2-40
Ped and Void Surface Features • 2-25
  Amount • 2-27
  Color • 2-28
  Continuity • 2-27
  Distinctness • 2-28
  Kind • 2-25
  Location • 2-28
Pendant • 2-24
Penetration Resistance • 2-54
Penetration Resistance Class • 2-55
Perched Water Table • 1-14
Periglacial (Geomorphic Environment; Landforms) • 3-28
Permeability • 2-68
Permeability (Discussion) • 2-68
Permeability Class • 2-69
Permeability Coefficient • 2-68
Petrocalcic Horizon • 1-26, 2-34
Petroferric • 1-27, 2-34
Petrogypsic Horizon • 1-26, 2-34
pH • 2-70
Physical Crusts • 2-64
Physiographic Division • 1-4, 3-1, 3-2
Physiographic Location • 1-4, 3-1, 3-2
Physiographic Province • 1-4, 3-1, 3-2
Physiographic Section • 1-4, 3-1, 3-2
Phytoliths (plant) • 2-20
Pipestems • 2-23
Piping (Erosion) • 1-23
Placic Horizon • 1-26
Plant Common Name • 1-16
Plant Opal • See Phytoliths
Plant Scientific Name • 1-16
Plant Symbol • 1-16
Plasticity • 2-53
Plasticity Class • 2-53
Plinthite • (cover photo, i )1-27, 2-22
```

Pocket Penetrometer • 2-54 Ponding • 1-12 Depth • 1-12 Duration • 1-12 Frequency • 1-12 Pores • 2-59 Quantity • 2-56 Quantity Class • 2-56 Shape • 2-59, 2-60 Size • 2-56 Size Classes • 2-56, 2-58 Vertical Continuity • 2-61 Pores (Discussion) • 2-59 Precipitates • 1-21, 5-3, 5-6 Preferential Flow • 2-61 Pressure Faces • 2-25, 2-26 Primary Packing Voids • 2-56, 2-60 Profile / Pedon Description • 2-1 References • 2-79 Public Land Survey • 6-1 Pvroclastic Terms • 5-10

Q

Quadrangle Name • 1-2

R

Raindrop Impact Crust • 2-64 Range (location) • 6-1 Reaction (pH) • 2-70 Reaction to Alpha-dipyridl (NASIS) • See Reduced Conditions Redox Concentrations • 2-14, 2-15 Redox Depletions • 2-14, 2-15 Redoximorphic Features • 2-15 Boundary • 2-17 Color • 2-17 Contrast • 2-17 Hardness • 2-17 Kind • 2-15 Location • 2-17 Moisture State • 2-17 Quantity • 2-16 Shape • 2-17

Size • 2-17 Redoximorphic Features-RMF (Discussion) • 2-14 Reduced Conditions • 2-72 Reduced Matrix • 2-14, 2-15 Reference Samples • 8-1 Relative Size (of Exposure) • 2-1 Rill (Erosion) • 1-23 Rill (Microfeature) • 3-17, 3-32, 3-33 RMF Shapes • 2-23 Rock and Other Fragments • 2-37 Kind • 2-37 Roundness • 2-38 Size Classes and Descriptive Terms • 2-40 Volume Percent • 2-38 Rock Charts • 5-3 Rock Fragments • 2-31, 2-34, 2-37 Quantity • 2-31 Size • 2-31 Root channels • 2-59 Root Pseudomorphs • 2-23 Roots • 2-56 Location • 2-58 Quantity • 2-56 Quantity Class • 2-56 Size • 2-56 Size Classes • 2-56, 2-58 Roundness (Rock and Other Fragments) • 2-38, 2-39 Runoff • 1-24 Rupture Resistance • 2-49 Blocks, Peds, And Clods • 2-50 Surface Crust And Plates • 2-51

S

Salinity • 2-72
Salinity Class • 2-72
Sand Coats • 2-25
Satiation • 1-13
Saturated Hydraulic Conductivity • 2-68, 2-69
Saturated Hydraulic Conductivity Classes • 2-70
Saturated Hydraulic Conductivity (Discussion) • 2-68
Saturation • 1-13
Scale (Topographic Quadrangle) • 1-2
Scientific Plant Name • 1-16
Seasonal High Water Table - Kind • 1-14
Secondary Carbonates • 1-27
Section (location) • 6-2

```
Sedimentary Rocks • 1-21, 5-2
Sedimentary and Volcaniclastic Rocks Chart • 5-6
Series Name • 1-4
Sheet (Erosion) • 1-23
Shell Fragments • 2-20
Shot • 2-23
Silt Coats • 2-25
Site Description • 1-1
Skeletans • 2-25
Slake test • 2-32
Slickensides • 1-27, 2-25, 2-26
Slope Aspect • 1-5, 3-1, 3-37
Slope Complexity • 1-5, 3-1, 3-37
Slope Gradient • 1-5, 3-1, 3-37
Slope (Landforms) • 3-32
Slope Shape • 1-6, 3-1, 3-37
Smeariness • 2-52
Sodium Adsorption Ratio (SAR) • 2-73
Soft, Powdery Lime • See Secondary Carbonates
Soft Rock Fragments • See Pararock Fragments
Soil Color • 2-7
Soil Crusts (Discussion) • 2-64
Soil Crusts • 2-65
  Kind • 2-66
Soil Matrix Color • 2-7, 2-8
(Soil) Matrix Color —Location or Condition • 2-8
Soil Moisture Status . See Soil Water State
Soil Moisture Status - Consistence (obsolete) • 2-50
Soil Permeability • 2-68
Soil Sample Kinds • 8-1
Soil Series Name • 1-4
Soil Structure • 2-41
  Grade • 2-43
  Size • 2-43
  Type • 2-41
Soil Surface • 2-5
Soil Survey Area Identification Number (SSID) • 1-2
Soil Taxonomy • 4-1
  References • 4-9
Soil Temperature • 1-1
Soil Temperature Depth • 1-1
Soil Texture • 2-29
Soil Water State • 1-13
Solution (Geomorphic Environment; Landforms) • 3-24
Special Features • 2-67
Sphericity • 2-39
```

```
Sponge Spicules • 2-20
State Abbreviation • 1-2
State Physiographic Area • 1-4, 3-1, 3-8
State Plane Coordinate System • 6-4
Stickiness • 2-53
Stickiness Class • 2-53
Stone Line • 2-67
Stop Number (Transect) • 1-3
Stress Features • 2-25, 2-26
Stringers • 2-23
Structure • See Soil Structure
Structure Shape • See Soil Structure - Type
Subordinate Distinctions • See Horizon Suffixes
Surface Coats • 2-15
Surface Crusts • See Soil Crusts. 2-64
Surface Crust and Plates (Rupture Resistance) • 2-49
Surface Crust and Plates Classes (Rupture Resistance) • 2-51
Surface Fragments • 1-25
  Kind • 1-25
  Mean Distance Between Fragments • 1-25
  Shape • 1-25
  Size • 1-25
Surface Morphometry • 1-4, 3-1, 3-37
Surface Runoff • 1-24
Surface Stoniness • 1-25
```

Т

```
Table Comparing Particle Size Systems • 2-36
Tabular List for Determination of Color Contrast • 2-12
Taxonomic Classification • 2-2
Tectonic and Structural (Geomorphic Environments; Landforms) • 3-31
Terms Used In Lieu of Texture • 2-34
Terraces, Stepped Landforms (Geomorphic Components of) • 1-7, 3-40
Texture • See Soil Texture
Texture Class • 2-29
Texture Modifiers • 2-30, 2-31
Texture Modifiers (Compositional) • 2-32
Texture Triangle
  Combined Fine Earth Texture Classes and
     Soil Textural Family Classes • 4-8
  Fine Farth Texture Classes • 2-30
  Soil Texture Family Classes • 4-7
Threads • 2-23
```

Throughflow • 1-24 Till Terms • 5-9 Time Scale • See North American Geologic Time Scale Tongues • 2-67 Topographic Map • 1-2 Topographic Quadrangle • 1-2 Townships (location) • 6-1 Transects • 1-3 Delineation Size • 1-3 Kind • 1-3 ID • 1-3 Selection Method • 1-3 Stop Method • 1-3 Trans-Horizon Cracks • 2-62 Transitional Horizons • 2-2, 4-1 Transported Deposits • 1-19 Tubular Pores • 2-59, 2-60 Tunnel (Erosion) • 1-23

U

Unconfined Compressive Strength • 2-54
Undulation • 2-5
Universal Transverse Mercator (UTM) Rectangular Coordinate System • 6-4

٧

Variegated (color) • 2-8
Vegetation / Land Cover • 1-15
Vesicular Crust •2-65
Vesicular Pores • 2-59, 2-60
Volcanic Deposits • 1-19
Volcanic and Hydrothermal (Geomorphic Environment; Landforms) • 3-30
Volcaniclastic Rock Terms • 5-6
Vughs • 2-59, 2-60

W

Water Bodies (Landforms) • 3-36
Water Laid Deposits • 1-19
Water Status • 1-10
Water Table • See Depth to Water Table, Seasonal High Water Table
Wedge Structure • 2-41
Wetland (Landforms) • 3-35