Multiple pathways of development in northeastern forests: The role forest history plays in mature forest structure

Stephen Peters-Collaer¹, William Keeton¹, Andrew Whitman²

¹ University of Vermont

² Maine Forest Service

University of Vermont Rubenstein School of Environment and Natural Resour

Background

- Many forests in Northeast are mature (80-150yrs) as forests recover from historic land-use
- Thus, structure and functions of mature forests are increasingly relevant regionally
- Mature forest structure of extra interest due to the USFS & BLM national inventory of mature and old-growth forests

Background

 Conventional stand development models following human land-use are based on <u>cleared</u> forests (ie. Oliver and Larson 1996)

- In these models, complexity is low until late in stand development (ie. dead trees, coarse woody debris (CWD), large trees, etc.)
- These models predict mature forests are developing complex structures, but in low quantities

Background

- Stand scale research shows partial disturbances can lead to alternate development pathways and differences in structure
- Many Northeast stands were only partially logged, and some were lightly managed after stand initiation
- Regional models lack multiple development pathways, and it's unclear how such pathways have impacted mature forest structure

Hypothesized alternative stand development pathways, Donato et al. 2012

Research Question

How variable is the structure of mature forests in the Northeast, and is the variability linked to forest history and alternate pathways of stand development?

Hypotheses

• H1: The structure of mature stands in the Northeast is highly variable

 H2: Forest history explains a significant portion of this variability

 H3: The link between forest history and mature forest structure supports alternate pathways of stand development at a regional scale

Site Details

- 63 mature, northern hardwood-conifer stands with minimal natural disturbance
- Four forest histories:
 - Cleared-unmanaged (conventional pathway)
 Cleared-managed
 - 3. Partially cleared-unmanaged
 - 4. Partially cleared-managed

Research Q: What is the structural variability of mature forests and is this variability linked to forest history and pathways of development?

Structural Metric	First quartile	Median	Third quartile	Range
CWD Volume (m³ /ha)	36	47	79	6 - 189
Live aboveground biomass (Mg/ha)	149	195	230	82 - 391
Standing Dead Aboveground Biomass (Mg/ha)	10	18	30	0 - 74

H1: Mature forests have variable structure

H2: Forest history is linked to this structural variability

Research Q: What is the structural variability of mature forests and is this variability linked to forest history and pathways of development?

Structural Metric	First quartile	Median	Third quartile	Range
CWD Volume (m³ /ha)	36	47	79	6 - 189
Live aboveground biomass (Mg/ha)	149	195	230	82 - 391
Standing Dead Aboveground Biomass (Mg/ha)	10	18	30	0 - 74

H1: Mature forests have variable structure

H2: Forest history is linked to this structural variability

A JORITY VOTING / AVERAG

Research Q: What is the structural variability of mature forests and is this variability linked to forest history and pathways of development?

Structural Metric	First quartile	Median	Third quartile	Range
CWD Volume (m ³ /ha)	36	47	79	6 - 189
Live aboveground biomass (Mg/ha)	149	195	230	82 - 391
Standing Dead Aboveground Biomass (Mg/ha)	10	18	30	0 - 74

H1: Mature forests have variable structure

H2: Forest history is linked to this structural variability

Research Q: What is the structural variability of mature forests and is this variability linked to forest history and pathways of development?

Structural Metric	First quartile	Median	Third quartile	
CWD Volume (m²/ha)		47	79	6 - 189
	149	195	230	82 - 391
	10	18		0 - 74

H1: Mature forests have variable structure

H2: Forest history is linked to this structural variability

AJORITY VOTING / AVERAG

2: Is mature forest structure related to forest history?

Cleared and unmanaged (conventional pathway)

Cleared and lightly managed

Partially cleared and unmanaged

Partially cleared and lightly managed

Created with BioRender.com

2: Is mature forest structure related to forest history?

- Forest history explained more variation in structural metrics than climate, topography or geography
- Used Random Forest to identify most important structural metrics for predicting a stand's forest history

2: Random Forest Results

Importance values of structural metrics used in random forest classification

Standing dead biomass (Mg/ha) Quadratic mean diameter (cm) Live stem density (#/ha) Live aboveground biomass (Mg/ha) Large live tree density (#/ha) Dead stem density (#/ha) CWD volume (m3/ha) 15 10 5 Random Forest Importance Value

Live biomass and large tree density most predictive of forest history

Research Q: What is the structural variability of mature forests and is this variability linked to forest history and pathways of development?

Structural Metric	First quartile	Median	Third quartile	Range
CWD Volume (m ³ /ha)	36	47	79	6 - 189
Live aboveground biomass (Mg/ha)	149	195	230	82 - 391
Standing Dead Aboveground Biomass (Mg/ha)	10	18	30	0 - 74

H1: Mature forests have variable structure

H2: Forest history is linked to this structural variability

Research Q: What is the structural variability of mature forests and is this variability linked to forest history and pathways of development?

	47	79	6 - 189
149	195	230	82 - 391
10	18		0 - 74

H1: Mature forests have variable structure

H2: Forest history is linked to this structural variability

3: Differences in mature forest structure across forest history groups

- All alternative pathways had elevated live biomass (Kruskall-Wallis test)
- Differences in dead biomass. Partially cleared-unmanaged had most dead biomass
- Two alternative pathways had more large trees than conventional pathway

3: Alternate pathways of stand development

Cleared and then unmanaged (conventional pathway)

Cleared and then managed

Partially cleared and then unmanaged

Partially cleared and then managed

Mature Stand Structure

↑ large treesthan cleared-unmanaged

↑ dead biomass than clearedmanaged

↑ large trees than clearedunmanaged

3: Alternate pathways of stand development

Mature Stand Structure

Forest history

Assessing broad differences in complex structure

- Ranked sites based on CWD volume, live biomass, standing dead biomass, QMD and big live tree density. Compared ranks across groups
- Non-conventional pathways had significantly more complex characteristics on average (ANOVA)
- Suggests complex characteristics can develop earlier in non-conventional pathways

Research Q: What is the structural variability of mature forests and is this variability linked to forest history and pathways of development?

Structural Metric	First quartile	Median	Third quartile	Range
CWD Volume (m ³ /ha)	36	47	79	6 - 189
Live aboveground biomass (Mg/ha)	149	195	230	82 - 391
Standing Dead Aboveground Biomass (Mg/ha)	10	18	30	0 - 74

H1: Mature forests have variable structure

H2: Forest history is linked to this structural variability

Takeaways

- Alternate pathways are prevalent across the Northeast and altering mature forest structure
- Alternate pathways can develop complex structures like large trees and deadwood <u>earlier</u> across the region
- This can alter mature forest functions such as habitat provisioning, carbon storage, resilience, improve stream function

Acknowledgements

USDA McIntire-Stennis Forest Research Program NSF Graduate Research Fellowship Program University of Vermont Field Crews

Questions?

Assessing broad differences in complex structure between pathways

- Sites were ranked 1-63 based on 6 structural metrics indicative of old forest structure
- Rankings were averaged across all metrics to develop a mean complexity ranking

Stand	forest history	CWD Rank	Live Biomass Rank	Standing Dead Biomass Rank	QMD Rank	Large Live Tree Density Rank	Mean Rank
Arbutus Outlet	Intermediate- unmanaged	39	31	17	53	57	39.4
Bagley	Intermediate- unmanaged	46	9	9	26	28	23.6
Beth's Brook	Cleared- unmanaged	15	52	57	46	44	42.8

Randomly selected stands to provide an example of ranking system

1: Range of structural conditions

Structural Metric	Min	Max	Mature Reference Values	Citation	Old-growth Reference Values	Citation
CWD Volume (m³ /ha)	6	189	12 - 89	Hale et al. 1999; Keeton et al. 2011	12-122	Stewart et al. 2011; Hale et al. 1999; Keeton et al. 2011
Live aboveground biomass (Mg/ha)	82	391	196 - 267	Rutkowski and Stottlemyer 1993; Forrester et al. 2003; Keeton et al. 2011	266-352	Keeton et al. 2011; Woods and Kern, 2022
Standing Dead Aboveground Biomass (Mg/ha)	0	74	18 - 41	Forrester et al. 2003; Keeton et al. 2011	39	Keeton et al. 2011
Live Stem Density (#/ha)	192	2572	357 - 1156	Rutkowski and Stottlemyer 1993; Forrester et al. 2003; Keeton et al. 2011; Hale et al. 1999	175 - 627	Stewart et al. 2011; Hale et al. 1999; Keeton et al. 2011
Dead Stem Density (#/ha)	0	317	0 - 90	Keeton et al. 2011; Hale et al. 1999	0 - 100	Stewart et al. 2011; Hale et al. 1999; Keeton et al. 2011
Quadratic Mean Diameter (cm)	13	36	28	Keeton et al. 2011	27 - 34	Stewart et al. 2011; Keeton et al. 2011
Large Live Tree Density (# > 50cm dbh /ha)	0	80	9	Keeton et al. 2011	39 - 49	Stewart et al. 2011; Keeton et al. 2011

Structural Metric	Range of Stand Values	Mature Reference Values	Old-growth Reference Values
CWD Volume (m³ /ha)	6–189	12 - 89	12-122
Live aboveground biomass (Mg/ha)	82 – 391	196 - 267	266-352
Standing Dead Aboveground Biomass (Mg/ha)	0-74	18 - 41	39
Live Stem Density (#/ha)	192 – 2572	357 - 1156	175 - 627
Dead Stem Density (#/ha)	0-317	0 - 90	0 - 100
Quadratic Mean Diameter (cm)	13-36	28	27 - 34
Large Live Tree Density (# > 50cm dbh /ha)	0 - 80	9	39 - 49

data_type

1: Range of structural conditions

Structural Metric	First quartile	Median	Third quartile	Range of values	Mature Reference Values	Citation	Old-growth Reference Values	Citation
CWD Volume (m³/ha)	36	47	79	6 - 189	12 - 89	Hale et al. 1999; Keeton et al. 2011	12-122	Stewart et al. 2011; Hale et al. 1999; Keeton et al. 2011
Live aboveground biomass (Mg/ha)	149	195	230	82 - 391	196 - 267	Rutkowski and Stottlemyer 1993; Forrester et al. 2003; Keeton et al. 2011	266-352	Keeton et al. 2011; Woods and Kern, 2022
Standing Dead Aboveground Biomass (Mg/ha)	10	18	30	0 - 74	18 - 41	Forrester et al. 2003; Keeton et al. 2011	39	Keeton et al. 2011
Live Stem Density (#/ha)	442	553	670	192 – 2572	357 - 1156	Rutkowski and Stottlemyer 1993; Forrester et al. 2003; Keeton et al. 2011; Hale et al. 1999	175 - 627	Stewart et al. 2011; Hale et al. 1999; Keeton et al. 2011
Dead Stem Density (#/ha)	33	60	95	0-317	0 - 90	Keeton et al. 2011; Hale et al. 1999	0 - 100	Stewart et al. 2011; Hale et al. 1999; Keeton et al. 2011
Quadratic Mean Diameter (cm)	23	27	29	13–36	28	Keeton et al. 2011	27 - 34	Stewart et al. 2011; Keeton et al. 2011
Large Live Tree Density (# > 50cm dbh /ha)	10	17	30	0-80	9	Keeton et al. 2011	39 - 49	Stewart et al. 2011; Keeton et al. 2011

Differences in mature forest structure across forest history groups

 Statistical comparisons with Kruskall-Wallis test as data were not normal

🚔 Cleared and unmanaged 🚔 Cleared and lightly managed 븢 Partially cleared and unmanaged 븢 Partially cleared and lightly managed

Is mature forest structure related to forest history? – Linear Models

- Built models assessing the importance of forest history, climate, topography and geography for four unique structural metrics
- Compared partial r² of predictors to assess their relative importance to structural variability

Dependent Variable	Independent Variables in Final model
Live Aboveground Biomass	forest history, Mean Temperature, Total Precipitation, Elevation, Latitude
Coarse Woody Debris (CWD) Volume	forest history, Mean Temperature, Total Precipitation, Longitude, Latitude
Standing Dead Biomass	forest history, Mean Temperature, Total Precipitation, Elevation, Latitude
Large Live Tree Density	forest history, Mean Temperature, Total Precipitation, Elevation, Latitude

Is mature forest structure related to forest history? – Model Results

- forest history explained highest percentage of the variability for 3 of 4 models and was a close second in the 4th.
- Explained between 12% and 57% of variability, suggesting forest history is critical to describing the variation in mature forest structure

Dependent variable	Independent variable with highest partial r ²	Independent variable with second highest partial r ²
Live aboveground biomass	<u>Forest history</u> (partial r ² = 0.57)	Latitude (partial r² = 0.07)
Coarse woody debris (CWD) volume	Longitude (partial r ² = 0.27)	<u>Forest history</u> (partial r ² = 0.21)
Standing dead biomass	<u>Forest history</u> (partial r ² = 0.12)	Latitude (partial r² = 0.007)
Large live tree density	<u>Forest history</u> (partial r ² = 0.38)	Total precipitation (partial r ² = 0.06)