Using a functional trait approach to inform assisted migration for climate adaptation in the Northern Forest Region

Emily Anders e.anders@unh.edu

PI:

Heidi Asbjornsen, University of New Hampshire

Co-Pls:

John Butnor, USFS Northern Research Station

Martin Dovciak, SUNY-ESF

Matt Vadeboncoeur, University of New Hampshire

Jay Wason, University of Maine

Collaborators:

James Donahey, USFS Rochester and Middlebury Ranger Districts

William Kunelius, Manager, New Hampshire State Forest Nursery

Assisted Migration (AM)

Human assisted movement of species to more suitable habitats in a response to climate change.

Primary Objectives

- Increase the adaptive capacity, productivity and resilience of forests.
- Protect ecosystem services: biodiversity, carbon sequestration and forest-based products.

Limitations to AM in the NE

New Hampshire State Nursery

White Pine Natural Regeneration

- Historical reliance of silviculture in the NE on **natural regeneration** methods.
- Forest managers lack clear guidelines on selecting seed source populations.
- Limited supply of climate-appropriate seedling diversity in forest nurseries.

Functional Trait (FT) Based Approach for AM

Plant FTs

 Morpho-physiological or phenological characteristics that influence productivity, stress response, and allocation of resources (e.g., leaf size/shape).

- FTs link performance to the environment.
- Asses trait-environment interactions and adaptive capacity.

Intraspecific Trait Variation (ITV)

Ecotypes

 Populations with distinct genotypes, displaying different phenotypes due to local adaptation.

Southern Pinus strobus Northern Pinus strobus

Phenotypic Plasticity

 The expression of multiple phenotypes from the same genotype in response to environmental change.

Lower SLA

Higher SLA

Applications of Trait-Based AM

- Match seed sources or populations to local conditions and the anticipated future climate.
- Increase forest resilience, productivity, hydrologic regulation and carbon sequestration.

- (1) Quantify **ITV** of potential seed source populations along elevational and latitudinal gradients to assess **trait-environment interactions** and **acclimation potential** to future climate.
- (2) Assess **germination success** and **seedling quality** from potential seed source populations and maintain healthy seedlings for a future **common garden experiment** to assist forest nurseries develop an ecological and **climate-appropriate inventory for AM.**

Site Selection

10 study mountains, 3 sites along an elevational gradient (500-1000 m) were established by **Tourville et al. (2022)** in 2013.

Harvard Forest (**HAF**), Yale-Myers Forests (**YMF**) and Thompson Farm (**THF**).

Intraspecific trait analysis by **Hecking et al.** (2022) (\triangle).

Study Species and Distribution in the NE

USFS Forest Inventory & Analysis plot data (2014-2018).

Methods

Hydraulic Traits

- Minor Leaf Vein Density
- Turgor Loss Point
- Stomatal Traits
- Water use efficiency (δ13C)

Photosynthetic Traits

- Short Increment Cores
- Leaf Nitrogen Content
- Specific Leaf Area

Germination

- Seed Weight
- Germination Success

Tolerance

- Bark Thickness
- Cold Tolerance

Minor Leaf Vein Density

Stomatal Length and Density

Short Increment Cores

Specific Leaf Area (SLA)

Prior Findings on Intraspecific Trait Variation (ITV)

Hecking et al. 2022

- ITV was generally low and related to climate and light.
- Traits related to leaf chemistry, stem economics and branching architecture had higher levels of ITV.

Montane Temperate-Boreal Forests Retain the Leaf Economic Spectrum Despite Intraspecific Variability (Hecking et al. 2022)

Expected Outcomes

Build off the work of **Hecking et al. (2022)** with a comprehensive examination of FTs across a **larger climatic gradient.**

Document diverse **seed sources** that can be used for targeted **AM enrichment planting** of managed lands across the NE.

Provide seedlings for **CGE** in NE to assist forest nurseries develop **climate-appropriate inventory** for AM.

Climate Gradient Across Sites (Temp. and Precip.)

Climate adapted species planted in Transition Site (Second College Grant ASCC project)

Thank You

PhD Advisors:

Heidi Asbjornsen

Matt Vadeboncoeur

Undergraduate Assistance

- Nicolas Forestell
- Zachary Hooper
- Katie Johnstone
- Dakota Mako
- Aaron Saffian

Emily Anders

PhD Student at the University of New Hampshire USFS Pathways Intern

e.anders@unh.edu

Assisted migration a phenotypic evaluation of species, ecotypes, and drought responses

Sam Zuckerman | PhD candidate | Samuel.Zuckerman@unh.edu

Heidi Asbjornsen, Anthony D'Amato, Cameron McIntire, Jay Wason, Matthew Vadeboncoeur

NH Agricultural Experiment Station

Samuel.Zuckerman@unh.edu

Low

- > Resistance: improve forest defense a
- > Resilience: forest returns to desirable

> Transition: facilitate new forests that adapt to novel conditions

High

Forestry assisted migration: Transplanting species or populations adapted to the future climate of a region with the goal of maintaining forest health and productivity under climate change

Missing pieces 5

Which species?

From where?

Drought adapted?

Hotter with more consecutive dry days

Guiding questions

For potential assisted migration species in the Northeast...

- 1. Are ecotypes distinguishable from one another?
 - In growth rate, physiology, or anatomy?
- 2. Does drought exposure amplify these differences?
- 3. How important is ecotype selection compared to species selection?

Seedling selection

Species

Sugar maple

Eastern white pine

Black cherry

White oak

Northern red oak

Sources

MI: Cold Stream nursery, MI

VA: State nursery

NH: State nursery

Drought treatments

Growth

Height and diameter

Physiology

Stomatal conductance, photosynthesis

Anatomy

Specific leaf area, stomatal traits

Hypotheses

H1: Trees from warmer climates will grow faster and have higher rates of gas exchange

H2: When exposed to drought, trees from **arid** environments will be **least impacted**

Hypotheses

H1: Trees from warmer climates will grow faster and have higher rates of gas exchange

H2: When exposed to drought, trees from arid environments will be *least impacted*

Growth

Gas exchange

Hypotheses

H1: Trees from warmer climates will grow faster and have higher rates of gas exchange

H2: When exposed to drought, trees from **arid** environments will be **least impacted**

Growth

Expected

Gas exchange

Key takeaways

Ecotypes more easily distinguished by physiology than growth

- Inconsistent patterns (warmer/arid sources not always better)
- Limited selection of nursery stock from diverse provenances

Variability in ecotype performance may contribute to uncertainty in provenance selection

Acknowledgements

Heidi Asbjornsen--UNH

Cameron McIntire--USFS

Jay Wason--UMaine

Tony D'Amato--UVM

Matthew Vadeboncoeur--UNH

Jackson Ehmett Jason Demers

Katie Johnstone Jess Gersony/PLACE lab

Zach Hooper Emma Flaherty

Dakota Mako David Moore

Nicholas Forestell Tanner Frost

Aileen Auclair Emily Anders

Matthew Rozinski Matt Biondi

Jack Hastings Luke Hydock

Email me at: Samuel.Zuckerman@unh.edu