

Tree breeding to support forest resilience:

Species in detail – ash and elm

Mary Mason, Leila Wilson, Jennifer Koch, David Carey, Therese Poland, Kathleen Knight, Gus Goodwin

And many partners and collaborators

The Threat: Emerald Ash Borer (Agrilus planipennis)

- First detected in 2002, Detroit, MI US
- Now 40 % of range infested (Range=~480 billion hectares)
- 9 out of 16 U.S. species in EAB infested areas:
 - Fraxinus pennsylvanica (green ash)*
 - Fraxinus americana (white ash)*
 - Fraxinus nigra (black ash)*
 - Fraxinus quadrangulata (blue ash)*
 - Fraxinus profunda (pumpkin ash)*
 - Fraxinus caroliniana (Carolina ash)**
 - Fraxinus albicans (Texas ash)
 - Fraxinus berlanderia (Arizona ash)
 - Fraxinus latifolia (Oregon ash)***
 - *critically threatened"IUCN red list
 - **endangered IUCN red list
 - ***near threatened IUCN red list

Lingering Ash Exist: singly and clusters

Alum Creek, Oh 2022

R: 'bone yard' of downed dead ash Below: 2 heathy large ash trees a mile or so

away

photos: Dave Carey, USFS

Phenotype Parents and Progeny:

EAB Egg Transfer Bioassay

(assess resistance phenotype)

Coffee filter with eggs affixed to bark

Three grafted replicates of each genotype

EAB Egg Bioassay

Metrics:

- 2-3 weeks-egg hatched
 Y/N
- 8 weeks-larval outcome:
 L1, L2, L3, L4,
 Host-killed
- Larval weight
- LA are significantly different from unselected controls

Healthy larva

Host-killed larva

Lingering ash have a range of Proportion host killed Better than Susceptible but not as good as Asian host

Replicated Clone Test to Confirm EAB-Resistance

- 2 Locations
- 40 lingering green ash
- 8 lingering white ash
- Bioassay to Field correlation
- Will become improved seed orchard

Making and Testing Lingering x Lingering Families

Will become 2nd generation seed orchard

One bar per seedling, proportion host killed. Blue line is best control parent, green line is best LA parent.

Breeding for Range-Wide Forest Restoration

Heritability and other calculations of genetic control support continued breeding!

			estimate
Humans	height		0.8
Google says: "natural populations"			0.1-0.2
Green ash: parents	Tree killed larvae	r	0.15
Green ash: seedlings	Tree killed larvae	h ²	0.63
Green ash: grafted seedlings	Tree killed larvae	r	0.87

seed orchard

current climate-based population

future climate-based seed zone

Repeat for each area/population

- Capture genetic diversity
- Adaptive capacity
- Partners!

Black Ash Story

- Same story?
 - lingering black ash do exist
 - unselected black ash will kill a proportion of EAB larvae equal to lingering green ash (more than unselected green ash)
- With some twists?
 - Tree killed at lower EAB attack density?
 - looks to have a different response in bioassay
- > So

Different Responses to EAB Between Species

Green ash

- Often no response
- Doesn't kill

Black ash

- rigorous defense response
- · Doesn't always kill larve
- Not limited

Manchurian ash

- rapid response
- · Quick, effective response
- · limited

Black ash: High tree killed larvae doesn't always = better survival

defense response can, in some cases, become detrimental to the tree

Field data & bioassays: It takes fewer larvae to kill some black ash

Need to screen for larval kill & lack of detrimental defenses

Black ash: bioassay host killed larvae without reaction > Lingering black ash are out there, but likely harder to find

BB8 Ni-Mohawk TK L1

BB8 Ni-22015 TK L1

Lingering Black Ash: they exist as individual trees and within unselected families

Grafted Black Ash, unselected and Lingering (*)

Unselected Seedling Black Ash seedlings

Blue arrow best unselected green ash, green arrow best green LA

Opportunity to Develop Accelerated Breeding Strategy: Plant EAB-Resistant Black Ash Before EAB Arrives (Proactive Breeding)

Instead of waiting for >95 % of black ash to die, we can collect and screen
 Wild seed now!

Breeding Options:

- Pre-EAB: establish genetically diverse gardens on multiple sites
 - **1. Reserve** 1-2 gardens to protect from EAB with insecticides
 - 2. Sacrifice 1-2 gardens and select surviving seedlings
- Post-EAB:
 - Identify lingering ash
 - Monitor seedlings

Recent presentation with more detail:

RNGR.NET

Search: Mary Mason

Will pull up presentation from Oct 2024

Acknowledgements & Funding

The Holden Arboretum

David Burke, Charles Tubesing Rachel Kappler

Pennsylvania DCNR

Don Eggen, Houping Liu Tom Hall, Annetta Ayres

Michigan DNR

James Wieferich, Scott Lint, Simeon Wright

Indiana DNR

Phil Marshall

Toledo Metroparks

Rachel Hefflinger

Huron-Clinton Metroparks

Koch Group - USFS Delaware Aletta Doran, Julia Wolf, Gavin Nupp & many student interns

USFS FHP

Amy Hill Heather Smith Karen Felton Rick Turcotte

Funding:

USDA APHIS
USFS FHP (STDP, EM
programs)
MI DNR, Inv Spec GP
PA DCNR
Manton Foundation
Tree Species in Peril

American elm (Ulmus americana)

Identify additional DED-tolerant American elms: Survivor elm populations

Survivor elm on the landscape

Christian Marks, 2017

Collect scion and seeds of survivor trees

Elm propagation techniques: vegetative production

New scion is grafted onto existing rootstock

Cuttings are taken from grafted material and new clones are generated

Elm propagation techniques: vegetative production

From softwood cuttings to clonal trees in field trials

Inoculation with DED fungus

DED inoculation trial results

Clones of 29 survivor
American elms were planted
in complete replicate blocks
in Delaware, OH and
inoculated with DED
10 years after planting.

Elm restoration in New England

- Work established by Christian Marks while at TNC
- Have clones and/or progeny of over 50 large survivor elms from New England
- 2 plantings in VT (Benson, Lemington)
- 2 plantings in central OH

Elm restoration in New England

Inoculating >3000 New England survivor elm progeny and clones in OH trials spring 2025

Have refined a potted elm assay

Goal: To accelerate the identification of tolerant genotypes and reduce expenses

60 dpi foliar symptoms

Comparing potted assay with field trial ratings of resistance

Testing other tools to phenotype survivor elms

- Near-infrared spectroscopy
 - A. Conrad, C. Flower,
 NRS; C. Rosa, A. Miller,
 Penn State University
- Hyperspectral/multispectr al imaging
 - J.Jian, X. Wei, S. Fei,
 Purdue University, A.
 Conrad, C. Flower, NRS
- Transcriptomics
 - C. Rosa, A. Miller, Penn State University; C. Flower, NRS

Image credit: J. Jian, X. Wei, Purdue University

Acknowledgements/Partners

- Christian Marks, MassAudubon
- John Butnor, Paula Murakami, Anna Conrad NRS
- Tony D'Amato, Chris Hansen, Steve Keller, UVM
- The Nature Conservancy
- R9 S&PF
- Nick Labonte, NFS
- NRS Techs/interns in Delaware: Josh Wigal, Nancy Hayes-Plazolles, Kirsten Lehtoma, Mikayla Bailey, Allison Patrick, Tim Fox
- The Manton Foundation

Contact

Mary Mason, NRS Mary.Mason@usda.gov Leila Wilson, NRS Cornelia.Wilson@usda.gov