Forests on the Move: Tracking Climate Related Changes of Treelines in Montane Systems of the Northeast

Jordon Tourville (SUNY-ESF – jtourvil@syr.edu) Martin Dovciak (SUNY-ESF) David Publicover (AMC) Sarah Nelson (AMC)

and the first

LETTER

Are treelines advancing? A global meta-analysis of treeline response to climate warming

Melanie A. Harsch,¹* Philip E. Hulme,¹ Matt S. McGlone² and Richard P. Duncan^{1,2}

Current (well educated) Assumptions

- Treeline locations are sensitive to changes in climate
- Changes in climate can be modulated by topography

Goals

G1 - Quantify changes in treeline position on alpine peaks of the northeast over the last several decades

G2 - Assess demographic structure of tree species at treeline

G3 - Determine variables that can explain potential changes in treeline position

Hypotheses

H1 - Treelines in the Presidentials and Katahdin have shifted upslope over recent decades

H2 - Diffuse treeline form is more sensitive to change (greater altitudinal shifts)

H3 - Significant variation in treeline change can be explained by measured climatic and topographical variables (temperature, slope, aspect, etc.)

H1 – Treeline Advance

Full belt transect – all intersecting trees

- Species ID
- Basal diameter (3 classes)
- Height (3 classes)
- Treeline form

At 20m intervals

- GPS point
- Slope
- Aspect
- Elevation
- Soil depth to bedrock

Results

H1 – Treeline Advance

	Presidentials	Katahdin
Mean Treeline Elevation Shift (m)	11.77±1.67	8.39±1.12
Mean Treeline Shift Rate (m/year)	0.29	0.30
Area Above Treeline Change (%)	-4.13	-0.79

Island (multiple of the second Diffuse

100

Diffuse

H3 – Treeline Drivers

Conclusions

- H1 Supported, significant upslope advance of treelines
- H2 Supported, greater upslope shifts of diffuse treelines
 - Important role of soil depth
 - Demographic structure can predict treeline form
- H3 Supported, GDD (climate) and slope (topography) explain significant (although small) amount of variation in treeline change
 - Rate of change of climate variable could refine our ability to detect and quantify treeline advance

Acknowledgements

- People
 - Dr. Martin Dovciak
 - Dr. Jay Wason
 - The Dovciak Lab
 - EB Faculty and Grad Students
 - Eben Sypitkowski
 - Georgia Murray
 - Patrick Lynch

- Agencies
 - Appalachian Mountain Club (AMC)
 - SUNY-ESF
 - USFS
 - Baxter State Park

- Funding
 - Sussman Foundation
 - NSF
 - NY Flora Association
 - Botanical Society of America

The Edna Bailey Sussman Fund

