Using Electrical Circuit Analysis to Map Landscape Connectivity for Wildlife in Vermont Implications for Transportation Planning and Mitigation

Caitlin Drasher

Graduate Student cdrasher@uvm.edu

RUBENSTEIN SCHOOL OF ENVIRONMENT AND NATURAL RESOURCES

Vermont Roadways & Impacts

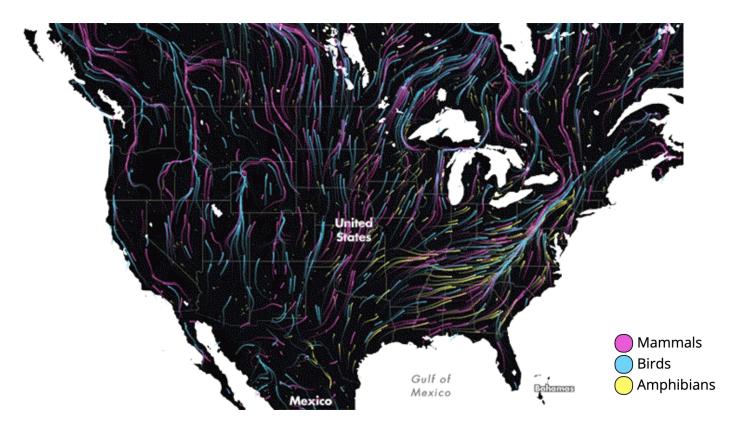
Roads and wildlife:

- Direct mortality (vehicle collisions)
- Habitat fragmentation
- Dispersal
- Genetic exchange
- Range shifts in response to climate change

Vermont:

- 78% forested
- 25,429 km of roadway
- >88,000 transportation structures
 - 6,206 structures >3ft in diameter

Which transportation structures are important for wildlife?


Focal Species:

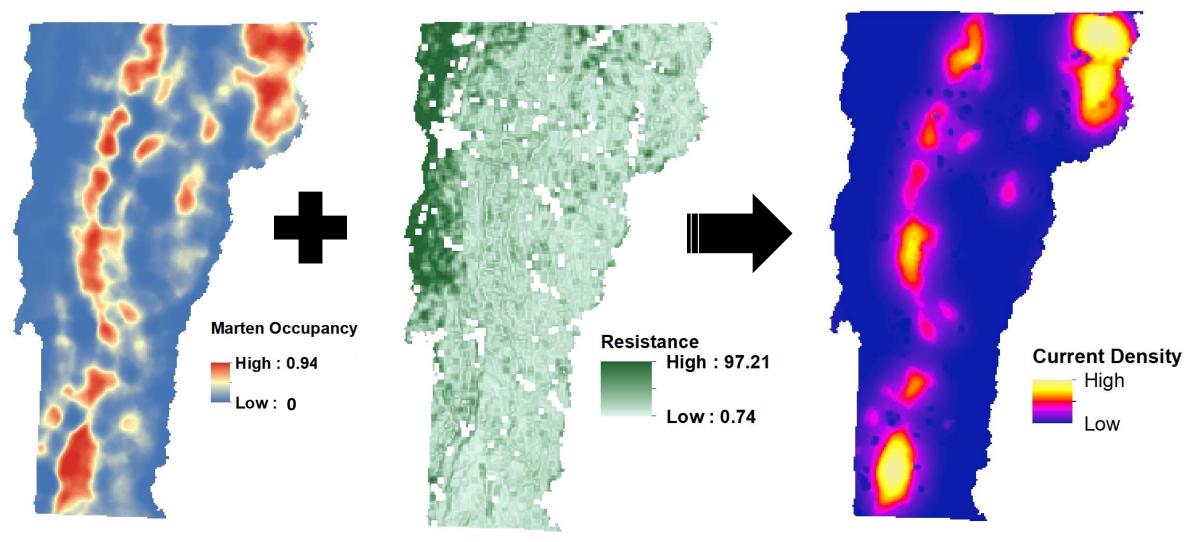
American black bear (Ursus americanus) Eastern bobcat (Lynx rufus) Eastern coyote (Canis latrans) Moose (Alces alces) Raccoon (Procyon lotor) Red fox (Vulpes vulpes) Striped skunk (Mephitis mephitis) White-tailed deer (Odocoileus virginianus) ***American marten (Martes americana)**

• Data from Aylward et al. 2018, 2020

Photo courtesy of Paul Marangelo, TNC

Circuit Theory Approach to Connectivity Modeling

Predicted movement paths of 2,954 species under climate change projections, based on research by Lawler et al. 2013 and McGuire et al. 2016. Researchers used circuit theory to model wildlife movement. "Migrations in Motion" map created by Dan Majika, TNC.


- Wildlife movement = electricity
- Landscape = circuit
- Electricity flows through <u>less</u> resistant paths

Omniscape Tool

(McRae et al. 2016)

		StructID	LS Current	SS Current	Final Rank
		3000100	240	367	1
	CONTRACTOR	E4E9F23	211	289	2
		2000100	175	233	3
		D651EE9	310	78	4
	18	9DDF487	102	57	5
STEP 1 Landscape scale	STEP 2 Structure scale		STEP 3 <i>Final ranking</i>		
MODEL LANDSCAPE-WIDE WILDLIFE MOVEMENTS	MODEL STRUCTURE- LEVEL WILDLIFE MOVEMENTS	COMBINE BOTH SCALES AND RANK STRUCTURES			

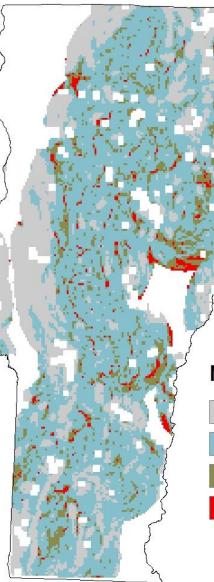
STEP 1: LANDSCAPE SCALE

Wildlife Occurrence

Landscape Resistance

Wildlife Movement Flow

STEP 1: LANDSCAPE SCALE


Landscape Connectivity for American Marten

• Top100_Structures

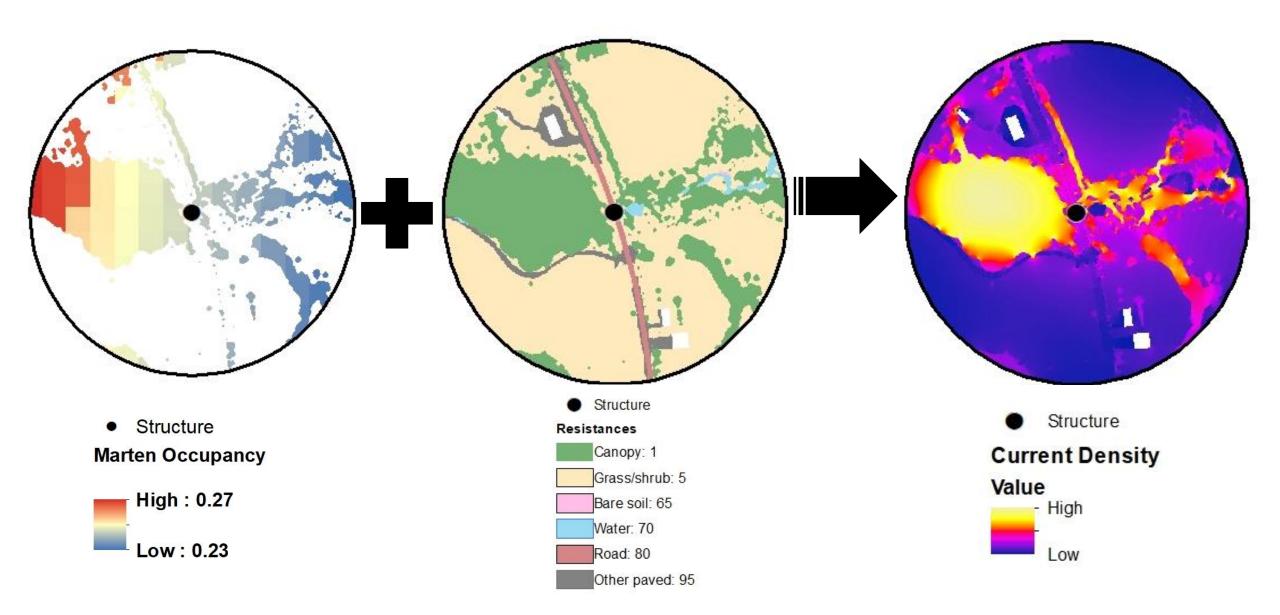
Current Density

- High : 31.1

Low:0

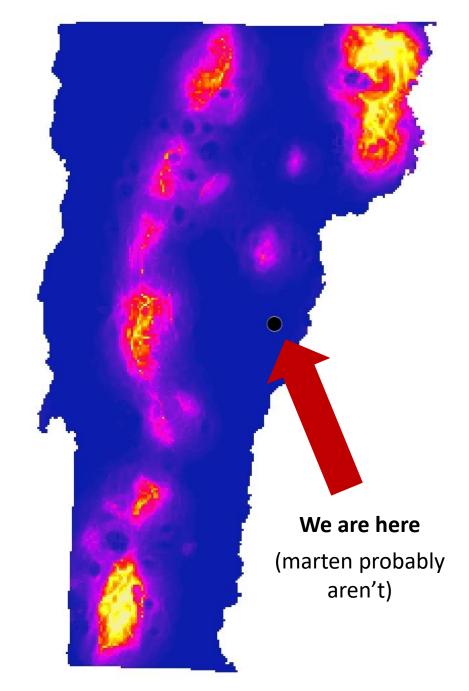
Normalized = <u>Model Current Density</u> Current Density Null Model Current Density

Normalized Current


Impeded: Less current than expected

Diffuse: As much current as expected

Intensified: Greater current than expected

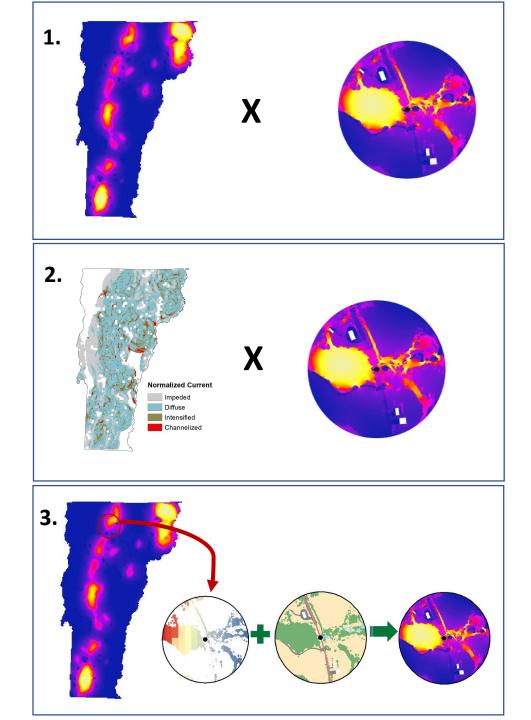

Channelized: Much greater current than expected

STEP 2: STRUCTURE SCALE

STEP 3: COMBINING SCALES & RANKING STRUCTURES

We are here (looks promising...)

...not so promising.


STEP 3: COMBINING SCALES & RANKING STRUCTURES

OPTIONS:

- 1. Landscape scale current density **x** structurescale current density
- 2. Landscape scale current category (weighted)x structure current density
- 3. Landscape scale current as source input for structure-scale
- 4. Bayesian approach

VALIDATION:

- Camera data
- Roadkill data

Implications

- Prioritize funding
- Structure improvements: shelving, substrate, shape/size/type of culverts, vegetation/cover near structure, etc.
- Cost-effective analysis
 - Collecting new movement data is expensive!
 - Model connectivity across broad area for multiple species

Other uses of circuit theory modeling:

A new model of landscape-scale fire connectivity applied to resource and fire management in the Sonoran Desert, USA

MIRANDA E. GRAY^{1,2,3} AND BRETT G. DICKSON^{1,2}

¹Lab of Landscape Ecology and Conservation Biology, Landscape Conservation Initiative, Northern Arizona University, Flagstaff, Arizona 86011 USA ²Conservation Science Partners, Truckee, California 96161 USA

> PLoS One. 2017 May 2;12(5):e0176960. doi: 10.1371/journal.pone.0176960. eCollection 2017.

Simulating the spread of selection-driven genotypes using landscape resistance models for desert bighorn sheep

```
Tyler G Creech <sup>1</sup>, Clinton W Epps <sup>1</sup>, Erin L Landguth <sup>2</sup>, John D Wehausen <sup>3</sup>,
Rachel S Crowhurst <sup>1</sup>, Brandon Holton <sup>4</sup>, Ryan J Monello <sup>5</sup>
```

Connecting today's climates to future climate analogs to facilitate movement of species under climate change

Caitlin E. Littlefield⁽⁾,¹* Brad H. McRae,² Julia L. Michalak,¹ Joshua J. Lawler,¹ and Carlos Carroll⁽⁾

¹School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195, U.S.A ²The Nature Conservancy, North America Region, 117 E Mountain Ave, Suite 201, Fort Collins, CO 80524, U.S.A ³Klamath Center for Conservation Research, Box 104, Orleans, CA 95556, U.S.A.

Early modern human dispersal from Africa: genomic evidence for multiple waves of migration

<u>Francesca Tassi, Silvia Ghirotto, Massimo Mezzavilla, Sibelle Torres Vilaça, Lisa</u> <u>De Santi & Guido Barbujani</u>

Investigative Genetics 6, Article number: 13 (2015) Cite this article

Circuit-theory applications to connectivity science and conservation

Brett G. Dickson ⁽¹⁾, ^{1,2*} Christine M. Albano,¹ Ranjan Anantharaman,³ Paul Beier ⁽¹⁾, ⁴ Joe Fargione, ⁵ Tabitha A. Graves ⁽¹⁾, ⁶ Miranda E. Gray, ¹ Kimberly R. Hall, ⁵ Josh J. Lawler, ⁷ Paul B. Leonard, ⁸ Caitlin E. Littlefield ⁽¹⁾, ⁷ Meredith L. McClure, ¹ John Novembre, ⁹ Carrie A. Schloss, ¹⁰ Nathan H. Schumaker, ¹¹ Viral B. Shah, ³ and David M. Theobald¹

AGENCY OF TRANSPORTATION

CONSERVATION SCIENCE PARTNERS

Acknowledgments

FUNDING: Vermont Agency of Transportation

PARTNERS:

VT Agency of Transportation - Glenn Gingras,

Chris Slesar

The Nature Conservancy - Paul Marangelo,

Dr. Kim Hall, Aaron Jones

VT Fish and Wildlife Department - Jens Hilke

University of Vermont - Dr. James Murdoch

Conservation Science Partners - Vincent Landau

Questions?

Caitlin Drasher Graduate Student cdrasher@uvm.edu

RUBENSTEIN SCHOOL of Environment and Natural Resources