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Natural and anthropogenically induced climate change exert strong influences 
on geographical range shifts of forest trees

Davis & Shaw (2001) Science Monleon & Lintz (2015) PLoS ONE



Boreal-deciduous ecotone (BDE)



Beckage et al. (2008) PNAS

Shifts in the Boreal-deciduous ecotone (BDE)

Foster & D’Amato (2015) Global Change Biology



Long-term forest tree inventory on Camels Hump

• Thomas Siccama established inventory plots (3.0x30.5m) in 1964 at intervals of 60m 
along an elevational gradient from 550 to 1,160m. 

Census years (n=9): 
1965, 1979, 1983, 
1986, 1990, 1995, 
2000, 2004, 2015

• All trees > 2cm diameter at breast height (dbh) were recorded in plots at each of the 11 
stands located along the elevational transect.
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2. Determine the importance of climate change and 
atmospheric pollution as drivers of temporal shifts 
in forest communities

Objectives

1. Characterize how the elevational gradient in forest 
composition has shifted over a 50-year period

YEAR i
YEAR j



Elevation

Generalized Dissimilarity Modeling (GDM)

Height of curve indicates 
overall magnitude of change 

in community composition 
associated with a variable

Slope can vary at any point 
along the gradient

Ferrier et al. (2007) Diversity and Distributions

Multivariate technique that models 
dissimilarity of species composition between 

sites or time periods (β diversity) as a 
function of environmental differences  

Fits non-linear I-splines for each 
predictor variable to represent the 

amount of biological change across 
an environmental gradient
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Climate data from NOAA land stations 
• Mean annual temperature 
• Annual precipitation 

• Burlington Airport (~100m) 
• Mt. Mansfield summit (~1200m) 

• Used linear extrapolation to calculate a 
lapse rate 

• temperature: -0.5°C / 100m 
• precipitation: +9.4cm / 100m  

• Associated predicted climate to 
Camels Hump survey plots
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Atmospheric pollution data
• Pollutant S (sulfate)
• Pollutant N (ammonium, nitrate)

• Hubbard Brook Experimental Forest 
years 1965-2014

• Underhill, VT
years 1984-2018

• Combined datasets using linear 
regression to yield a single pollutant S 
and N value / census year 
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Strong elevational gradient in forest 
community turnover within years

Deviance in community compositional change explained by elevation ranged from 53.53-63.01% across 9 
censuses.
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Strong elevational gradient in forest 
community turnover within years

Steepness in turnover is 
reduced significantly in the 

latest census (2015), consistent 
with a more homogeneous 

forest community.

Deviance in community compositional change explained by elevation ranged from 53.53-63.01% across 9 
censuses.
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downslope: 1990- 2015

American beech sugar maple
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Summary

The temporal models show the importance of recovery from 
atmospheric pollution, and corroborate previous findings of 

climate effects on northeastern forests

Species responses to climate change are complex 
and are not always accounted for in climate 

models

The spatiotemporal changes in the forest community 
on Camels Hump are reflective of regional change

e.g. red spruce recovery in recent decades

Wason & Dovciak (2017) Global Change Biology

Forest community is more homogeneous across the elevational gradient in the latest census, but 
we do not detect evidence of a synchronous upslope movement of species
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